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1 INTRODUCTION

1 Introduction

Non-linear relations between variables are ubiquitous in both natural and social systems. For
researchers, it is challenging to evaluate these relations if their functional form is unknown.
Canonical measures to quantify relations between variables such as the Bravais Pearson Product

Moment Correlation can only quantify linear relationships. This limitation renders the common
practice [9] to classify this measure as non-parametric short-sighted.

Transfer entropy [60] is an information-theoretic measure able to quantify both linear and
non-linear relations without assuming a functional form of this relation or the distribution of
the underlying samples. Unlike the Pearson Correlation, the transfer entropy is asymmetric.
Therefore, we can use it to infer the direction of information flow. When we apply this measure
to time series data, we can interpret this information flow as akin to a causal relation.
We will develop the theoretical foundation of his measure in the chapter (3).

While the concept of a genuinely non-parametric measure sounds promising, transfer
entropy is only well defined for discrete data. Proper discretization seems like an easy fix
for this limitation when researchers apply this measure to continuous data. However, previ-
ous research [44] found a strong dependence of the measure on the discretization hyperparameters.

In this thesis, we will extensively study the dependence of the transfer entropy measure
onto these parameter choices and provide an attempt to develop a more robust transfer entropy
calculus. Subsequently, we provide a recipe as a result of these analyses in section (5). We
conduct this evaluation with a non-linear model system and compare multiple standard binning
methods. Some readers might also find the theoretical discussion of these binning methods in
chapter 2 (specifically 2.3) useful for other applications.

Next to the discretization methods, we also cover the influence of sample size and data
partition detail and the effect of other standard practices such as gaussian remapping or rescaling.
Additionally, we will evaluate the effect of noise on the estimation.

In section (4), we develop a novel probability estimator to incorporate the bin size into
probability estimation (and thus transfer entropy calculation). We will also discuss some of its
properties. This estimator is evaluated in chapter (5.6).
Another main contribution of this section is the evaluation of the normalizations of transfer
entropy in section (5.3). The normalization enables comparability of the measure’s value.

Once we finish the evaluation and extension of the transfer entropy method, we will apply it
to stock index futures contracts as an example system of non-linearly related time series. Namely,
in the chapter (6), we will discuss the transfer entropy relation of index futures before and during
the first wave of the COVID-19 pandemic. In that context, we will also evaluate the information
flow from online sentiment (captured from the Reddit [6] platform). We will then compare it to
the financial time series relations in other periods, namely the dot-com bubble and the US housing
crisis. Finally, we will also evaluate the relation of information flow between index futures (that
should be zero in arbitrage-free markets [20]) to public policy uncertainty.

We find increases in information flows between index futures on the onset of the COVID-19 re-
sponse measures. Testing these flows with surrogate data reveals the directionality of these flows.
Additionally, we will find the flows to correlate with the economic policy uncertainty significantly.

As such, this thesis provides two main contributions to the scientific literature. First, we
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1 INTRODUCTION

conduct a thorough evaluation of the transfer entropy measure, discuss its caveats and provide
novel attempts to control them.
Secondly, we uncover a change in the information dynamics between index futures starting in
March 2020 during the COVID-19 pandemic by applying the transfer entropy calculus. We find
this increase to be highly correlated with economic policy uncertainty. We, therefore, uncover
evidence for the hypothesis that in economically uncertain times, financial markets lose efficiency.

Conventions and Notation Before we begin the discussion of the methods, let us discuss the
notations used in this thesis. We will use uppercase letters, for example, X , to refer to a variable
or a sampled process. Then, the calligraphic X refers to a specific empirical sample. Therefore,
we will discuss the information-theoretic measures as functions of variables. Nonetheless, we
calculate their empirical value from data. Thus the meaning of X and X is mostly interchangeable
as in all cases throughout this thesis. We can only infer X via X as a proxy.

Within the evaluation of the transfer entropy measure in section (6), we will see plots of the
same process with different resolutions. To unclutter these information-dense plots, we will omit
legends. The lines (if not noted otherwise) refer to an increasing number of bins starting from a
binary partition from bottom to top.

2



2 DATA ANALYSIS METHODOLOGY

2 Data Analysis Methodology

This chapter discusses the necessary data acquisition, analysis, and processing methodology,
which we apply in this thesis. First, we will introduce different data qualities and the applica-
ble univariate measures for sample characterization and distribution estimation. Then, as proper
discretization (or coarse-graining) of (quasi-) continuous data is a significant contribution of this
thesis, we will introduce traditional binning methods alongside those adapted from statistical cri-
teria and clustering algorithms. We will then proceed to discuss bivariate measures, some of which
rely on the chosen quantization. Within this section, we will also introduce transfer entropy with
its technical details. However, since transfer entropy is the central bivariate measure of this the-
sis, we will devote the subsequent chapter (3) to a comprehensive theoretical derivation. The last
section of this chapter concerns additional processing techniques (other than discretization) for
samples that we apply within this thesis. These methods enable studying the temporal evolution
of bivariate measures and quantifying the nonlinear contribution to the variable association.

2.1 Measurement, Time, and Scale Types

A collected sample can carry different amounts of information depending on the acquisition pro-
cess, how the data is processed, stored, and evaluated. In this first subsection, we will discuss
these different qualities.

2.1.1 Measurement Process

Data is a collection of observations. The designation datum stems from the Latin for something

given and describes an information-carrying observation on a population or population sample
[1]. Thus the measurement process is the assignment of signs or numerals to observed sample
facts according to a specific rule [67]. As such, the measurement M is a map from the state space
of the underlying population or process, W, of the to be measured variable W = WV to the sample
V which is a subset of the possible measurement values S and their corresponding order relation:

M :WV ! X ✓ S

wV 7! x+ e. (1)

The resulting observations can contain a single or multiple variables, W = WV1,V2,... in which case
the above expression is generalized accordingly. e = eSystematic + eNoise is the measurement error.
It consists of a systematic contribution that remains constant. Systematic errors may occur due
to miscalibration of measurement instruments or errors in the data processing. The noise term
is different for each datum. It may root in different factors such as misreading of a scale or
variations of the context. We understand the noise term as the realization of a random variable
that has a certain probability distribution.

Now, the sample, V , from a source with distribution V is a set of arbitrarily ordered observa-
tions v j 2V . If we take subsequent observations, then the map originates from the time-dependent
state space Wt and one generates longitudinal data of temporally ordered observations, Vt . Within
this thesis, context determines if a sample is time-ordered. Therefore, at times we drop the
subscript t to simplify expressions.
If the temporal spacing of observations is small and resultingly the measurement frequency is
high enough, one refers to the longitudinal data as time series [25]. However, this distinction is
subjective, and no sharp boundary exists.

3



2 DATA ANALYSIS METHODOLOGY

2.1.2 Scale Qualities

What distinguishes a datum x 2 X ✓ S from a mere number is the associated meaning. How this
numerical value is interpretable depends on the set S of possible values. Resultingly, the sample
can be of one of four different scales of measurement: the nominal, ordinal, interval, and ratio
scale [76]. We will now introduce these scale types. However, we will neglect a mathematically
rigorous discussion as intuitive understanding suffices for our purposes. Interested readers can
find it in the appendix (8.1).

Nominal Scale The nominal scale allows for a distinction between values but does not allow
ordering. For example, a person’s name allows for distinction, but the notion that Alice is in some
sense more than Bob carries no meaning. Even if Alice and Bob were soccer players with the
Jersey numbers 10 and 2 respectively, the statement would be void.

Ordinal Scale For an ordinal scale the x 2 X ✓ S can be ordered. It makes sense to say that
Alice is in a better (higher) mood than Bob. However, while ordering is possible, there is no mean-
ing in distances between values. We cannot quantify the extent to which Alice is happier than Bob.

Interval Scale For the interval scale, we can order the measured values by magnitude. Their
differences exist and can also be ordered. The relationship between the possible values of the
variables is positive monotonic, and linear. Thus, differences in values carry meaning. One
interval scale can be mapped onto another by a linear transformation [9].

Ratio Scale The ratio scale is distingushed from the interval scale by the existence of a true
zero point. Thus, the ratios of values carry meaning. For example 2°C/1°C = 2 but 2°C is not twice
as hot as 1°C whereas 2K/1K = 2 is. Squeezing operations on the ratio scale preserve the scale
type where as the shift by a constant value (obviously) does not [9].

Qualitative data is of a nominal or ordinal scale. Quantitative data is on the interval or
ratio scale, which are thus designated metric scales. If a quantitative variable can take only
specific values within an interval, it is called discrete. If it can take any value in the interval, it is
continuous.

2.2 Univariate Data Characterization

In this section, we will discuss univariate measures, S : X ! R, to characterize a variable X .
Usually, we do not have complete knowledge about X to analytically determine its properties.
We then infer these from the empirical sample X . Since S(X) is the true value and S(X ) is an
approximation, we use the first notation to discuss the measures within this thesis. All statements
are straightforwardly adapted to deal with samples instead of variables.

Which measures S can be applied depends on the data scale. The nominal scale has fewer
conditions than the ordinal scale, which has fewer than the interval scale. The ratio scale has the
tightest axioms. Therefore measures defined on scale types with fewer axioms can be applied to
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2 DATA ANALYSIS METHODOLOGY

data on a scale with more if one transforms the sample to another scale type with a mapping

jD :X ! X
0

x 7! x
0 (2)

that destroys the overhead information. For some measures, jD might be the identity map.
Generally, however, jD is not injective and thus nonlinear and not invertible. In subsequent
sections, we will establish that the choice of jD is nontrivial. The contribution towards a proper
choice is one of the main merits of this thesis.

Measures can be parametric or non-parametric. The latter assume the distribution of the vari-
able to belong to some family of distributions. Therefore obtaining the identifying parameters
from the sample allows defining the form of the distributions uniquely. In contrast, non-parametric
statistics do not rely on such assumptions.

2.2.1 Measures of Central Tendency

The measures of central tendency include, among others, the arithmetic and geometric means,
median, and mode. Whereas the mean calculation requires metric scales, we can apply the median
to the sub-metric ordinal scale. The mode works on nominal data. They designate a central value
around which the data clusters. If one wants to calculate the mode on interval scale data, for ex-
ample, a temperature sample with sufficient resolution, one might want to apply a coarse-graining
jD which clusters the data such that the mode value becomes meaningful. Without jD, the values
repeat too sparsely (if at all) for the mode to yield an accurate interpretation. While the clustering
of data destroys the specific location information of each datum, the aggregated data yields a
more robust picture of the most common temperature range in the measuring period.

2.2.2 Measures of Variability

Measures of variability measure the dispersion of the data around this central value. The
variance s2 = Ân

i=1(xi �µ)2 measures the quadratic deviation of the data from the mean, µ . The
interquartile range, IQR, is another measure of dispersion that is more robust against extreme
values [9].

2.2.3 Information Entropy

Information entropy is a univariate measure that we can interpret as a measure for the average
information content or surprise encoded in a random variable. On an empirical sample, the statistic
reads:

H(X) =
m

Â
j=1

p(x j) log(p(x j)) . (3)

where m is the number of discrete values of X and p(x j) the probability mass of the j
th one. This

measure as well as possible generalizations and their respective problems are discussed in detail
in section (3.2). Because of these problems the measure (3) is applied for continuous data with a
suitable discretization (see section 2.3). The development of a criterion to identify such a suitable
discretization is one contribution of this thesis and discussed in section (5.8).
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2 DATA ANALYSIS METHODOLOGY

2.2.4 Autocorrelation

Autocorrelation is the correlation (see section 2.4.1) of a time series with its time-shifted self,

rx(t) = r(xt ,xt�t) =
Ân

j=t+1(x j�t �µx)(x j �µx)

Ân

j=1(x j �µx)2 . (4)

t is the shift of the time series. The value is bound to the [�1,1] interval ranging from perfect
anticorrelation to perfect correlation. Thus, 0 indicates no self-association over the time t . As we
want to calculate the autocorrelation for a finite sample X , we are truncating them accordingly.
This thesis will evaluate rx(t) to determine how much of the past (t) we should include when
calculating the transfer entropy measure. Autocorrelation is a linear measure and is not capable of
capturing non-linear self-dependencies.

2.2.5 Power Spectrum

The power spectrum is the spectral density of a time series signal, the distribution of power over
frequency. It is related to the autocorrelation function by the Fourier transform. This relation is
known as the Wiener-Khinchin theorem [40]. Therefore the power spectrum s = s( f ) as a function
of frequency f is calculated as

sx( f ) =
•

Â
k=�•

rx(t)e�2pt f . (5)

In our applications, we only calculate a finite number of terms. As both the Fourier transform and
autocorrelation are linear, the power spectrum is a linear property.

2.2.6 Distribution Estimation

In the last section, we established the measurement process M as a map from the state space
to the sample W ! X (plus an error term). The state measured can be thought of as realizing
a random variable from a particular probability distribution. This distribution might vary with
time. However, given proper normalization, this corresponds merely to shaping the probability
distribution throughout the measurement period for time series data. We are therefore keen to
estimate the probability distribution in the state space using the sample. If one knows (or guesses)
the family of probability distributions of the variable, this task reduces to the mere estimation of
the parameters from the sample.

The Histogram Estimator for Continuous Variables If the distribution family is unknown, we
can resort to non-parametric estimation methods. A histogram probably represents the simplest
form of non-parametric density estimation [74]. For a continuous variable, it is a mapping from
the real line to a finite set of corresponding disjoint class intervals {Bi}i

with |{Bi}i
| = m. The

histogram requires the sample to be of metric scale type, and the probability distribution we want
to estimate is a probability density function (PDF). The mapping then reads

H : R! {Bi}i

x 7! B(x) =

8
>>>><

>>>>:

B1 if x  supB1

B2 if infB2 < x  supB2
...

Bm if x > infBm

(6)
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2 DATA ANALYSIS METHODOLOGY

Literature commonly refers to these class intervals as bins. Let X = {xi}i be a sample of data
from the PDF f with the support [a,b]. Then a partition partition into m uniformly sized bins is:

B1 =


a,a+

b�a

m

◆
,B2 =


a+

b�a

m
,a+

2(b�a)

m

◆
, . . . ,Bm =


a+

(m�1)(b�a)

m
,b

�
.

However, the bins must not necessarily be of uniform size. We will cover several approaches for
choosing the optimal number and size(-s) of bins in section (2.3). Additionally, the bounds a,b
might be unknown. In that case, we estimate them from the minimum and maximum of the sample.

For a given binning B j with the respective binwidths h j we obtain the fraction of data points
in the j

th bin n j/n = p̂ j, as an estimator for p j(x) = x2B j
·
R

B j
f (u)du. Subsequently, the histogram

density estimator is defined as

f̂n(x) =
m

Â
j=1

p̂ j

h j

x2B j
. (7)

To calculate the bias of the histogram estimator for continuous data, we first calculate its
expected value. With F the cumulative density function corresponding to f , the expected value is:

E( f̂n(x)) = E
✓

p̂ j

h j

◆
=

1
h j

E
⇣

n j

n

⌘

=
1
h j

·P(xi 2 B j)

=
1
h j

Z
a+Â j

k=1 hk

a+Â j�1
k=1 hk

f (u)du

=
F(a+Â j

k=1 hk)�F(a+Â j�1
k=1 hk)

a+Â j

k=1 hk �
⇣

a+Â j�1
k=1 hk

⌘

= f (x⇤) , (8)

for at least one x
⇤ 2 B j in the bin B j containing the argument of the estimator x 2 B j. We obtained

the last equality with the mean value theorem of differentiation. If the derivative of the PDF is
bounded, | f 0(x)| L, (see appendix: 8.2.1), and M the width of the biggest bin, we obtain a bound
for the bias with

bias( f̂n(x)) = E( f̂n(x))� f (x) = f (x⇤)� f (x)

= f
0(x⇤⇤) · (x⇤ � x)

 LM, (9)

where used the mean value again from the first to second. Hence, we learn that smaller (and thus
more) bins decrease the bias of the histogram estimator.
To now calculate the variance of f̂n(x), we set h to be the width of the smallest bin. Further, we
observe that we can model the number of data points in the bin B j with a binomial random variable

7



2 DATA ANALYSIS METHODOLOGY

B(n, p;x) with mean np and variance np(1� p). Thus, we obtain:

var( f̂n(x)) = var

 
m

Â
j=1

p̂ j

h j

x2B j

!

 1
h2n2 var

 
m

Â
j=1

n j x2B j

!

=
1

h2n2 var(n j)

=
P(x 2 B j)(1�P(x 2 B j))

h2n
.


P(x 2 B j)

h2n
.

From equation (9), we know that for a bin of width h we have P(x 2 B j) = p(x⇤)h. We choose h

to be the bin with the smallest width. With again |p(x)| L, we obtain

var( f̂n(x))
p(x⇤)h

h2n
 L

hn
. (10)

We can conclude that variance decreases with sample size. Additionally, it can increase with
shrinking bin sizes (and thus the number of bins).
We, therefore, have to consider a bias-variance-tradeoff when choosing bin widths and their
number. If we jointly consider the bounds of the bias in equation (9) and variance in equation
(10), we can conclude that the bias-variance-tradeoff is (at least in terms of bounds) optimized for
equal-width bins.

The Histogram Estimator for Discrete Variables With regards to the later discussion of the
transfer entropy measure, it is important to note that the discussed estimator is defined for con-
tinuous data. The division by the h js in equation (7) serves the normalisation of the integralR
R f̂n(x)dx = 1 and in general Âm

j=1 f̂n(x 2 Bi) 6= 1. A histogram of discrete data requires the sec-
ond normalisation. Subsequently, with the same binning setup the histogram is a map from the
discrete set D to the binning:

HDiscrete : R� D ! {Bi}i

x 7! B(x) =

8
>>>><

>>>>:

B1 if x  supB1

B2 if infB2 < x  supB2
...

Bm if x > infBm

(11)

and the corresponding estimator for the discrete probability mass function is

P̂n(x) =
m

Â
j=1

n j

n
x2B j

. (12)

The properties of the discrete histogram estimator can be obtained similar to the continuous case.
The expected value is

E
�
P̂n(x)

�
= E

⇣
n j

n

⌘
= P(x 2 B j) = p j

with p j the probability of x 2 B j. Then the bias vanishes as

bias
�
P̂n(x)

�
= E

�
P̂n(x)

�
�P(x) = p j � p j = 0.

8



2 DATA ANALYSIS METHODOLOGY

When we again utilize the fact that the probability of n values in B j follows a binomial variable.
With this knowledge we obtain

var
�
P̂n(x)

�
=

1
n2 var(n j) =

p(x 2 B j)(1�P(x 2 B j)))

n2 
P(x 2 B j)

n2 =
p j

n2  1
n2

since the probability mass function is bounded by 1. In the discrete case, the bias vanishes, and
the variance decreases faster than for the continuous histogram estimator.

2.3 Data Discretization

In the last section (equation 1), we introduced the discretization method or binning without spec-
ifying optimal shape. Regarding the later discussion of transfer entropy ([? ]), the chosen dis-
cretization map is essential. Therefore, this section presents a literature review of existing binning
techniques. The author started the review with the methods that are implemented in standard
statistic packages such as NumPy [32], or R [55]. He undertook significant efforts to obtain the
primary source for binning methods. However, these sources sometimes lack a statistically rig-
orous justification, heuristic, or even explanation of the method. Warranted by their widespread
adoption, we will discuss their performance nonetheless. In some cases, the original publications
were not untraceable.
Since we evaluate binning as a data discretization problem, we extend our discussion beyond clas-
sical direct binning methods to include approaches to adjacent problems.; namely, discretization
based on optimizing some statistical criterion and clustering methods where a subsequent partition
of the data range yields bins. The latter two are not standard for histogram calculation. However,
many applications of histograms do not venture beyond exploratory univariate data analysis. For
these, the influence is negligible. In our case, however, the discretization is integral to the trans-
fer entropy calculation (see section 3). Thus, a comprehensive analysis of methods addressing
adjacent problems is warranted.

2.3.1 Direct Binning Methods

There have been numerous methods suggested to find the optimal binning. They take different
approaches to fix the number m of equal-width-bins (where the highest and lowest sampled values
bound the binned range) or find the width of bins h. However, they share the approach that sample
characteristics yield the number or width of bins.

p
n Bins A statistical rule of thumb to choose the number of equal-width bins is

m = d
p

ne, (13)

where n is the number of data points. Various software employs this easy to compute standard
method to create histograms. For example, Excel [13].1

Sturges Formula Sturges formula [71], published in 1926, is the oldest attempt to systemati-
cally choosing bin widths. His approach was motivated by the notion of an ideal histogram for
normal data [62]. The simplest discrete probability mass function (PMF), which for a large num-
ber of trials that converges to a Gaussian density, is the binomial distribution, B(n, p; j), with a
probability of success p = 1/2. Consider a histogram with k bins labeled by j = 0, . . . ,k�1. The
resulting binomial PMF,

B(k�1,
1
2

; j) =

✓
k�1

j

◆✓
1
2

◆
k�1

,

1The author could not obtain any publication within reputable scientific sources.
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2 DATA ANALYSIS METHODOLOGY

now yields the number of data points (i.e. the number of successes of B) for the j
th bin. Respec-

tively, if we scale B(k�1, 1
2 ; j) with the sample size, B(k�1, 1

2 ; j) 7! n ·B(k�1, 1
2 ; j), we obtain

the respective count for the B j
th bin, nB j

.
By identifying nB j

with the respective binomial coefficients, we obtain the total number of data
points

n =
k�1

Â
j=0

nB j
=

k�1

Â
j=0

✓
k�1

j

◆
= (1+1)k�1 = 2k�1

where we used the binomial theorem, (x+ y)n = Ân

k=0
�

n

k

�
x

n�k
y

n for x = y = 1.
From this expression we derive Sturges formula for the bin count m:

m = dlog2(n)+1e. (14)

However, this rationale requires the sample size n to be a power of two (though the error of
breaking this assumption diminishes for large n). Additionally, it relies on the assumption of
(approximately) normally distributed data that justifies identifying the binomial coefficients with
bin counts. Nonetheless, other distribution shapes and resulting bin counts are entirely valid.
Resultingly, it is not generalizable to the extent proposed by Sturges [36]. It is, however, still an
option or even standard in popular statistical computer packages such as NumPy[32] or R [55].

Rice Rule The rice rule [41] is proposed as an alternative to Sturges’ formula and proposes a
higher number of bins. It reads 2

m = d2 3
p

ne. (15)

Doane’s Formula Doane’s formula [22] is a modification of Sturges formula aiming to better
the results for non-normal data. It therefore incorporates the skewness of the data with the term

log2

✓
1+

|g1|
sg1

◆

where g1 is the third moment (skewness),

g1 =
Âi(xi �µ)3

(Âi(xi �µ)2)
3
2
,

and

sg1 =

s
6(n�2)

(n+1)(n+3)

is the standard deviation of the third moment. If the data is not skewed, no correction is added to
equation (14) as g1 = 0. The full formula reads:

m = 1+ log2 (n)+ log2

✓
1+

|g1|
sg1

◆
. (16)

The more the distribution departs from the symmetric normal, the more bins are added. However,
the rate of this process decreases.

2Extensive literature research did not yield any systematical study, derivation, or justification of the rule. A proper
discussion is even absent in the original publication [41] where the authors state it as the preferred alternative to Sturges’
rule.
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Scotts Normal Reference Rule Scotts normal reference rule [63] obtains the asymptotic optimal
bin width h

⇤ by minimizing the integrated mean squared error of the histogram estimator. This
yields,

h
⇤ =

6R
R f 0(x)2dx

1
3
p

n
.

However, this approach requires knowledge of the underlying PDF f (x) (and its derivative needs
to exist and must be square-integrable). Therefore, the Gaussian density is proposed as a reference
standard. This yields

h =
3.49ŝ

3
p

n
(17)

where ŝ is the standard deviation of the distribution of the data estimated from the sample.

Freedmann-Diaconis Rule Freedmann and Diaconis rule [27] is a modification of Scotts rule,
which replaces the standard deviation dependent scaling factor with the interquartile range, IQR,
of the sample X :

h = 2
IQR(X )

3
p

n
. (18)

As the IQR is robust against outliers, they carry less influence in the bin width calculation. How-
ever, Freedman and Diaconis’ approach performs suboptimally for multimodal densities as the
derivation for equation (18) assumes characteristics of the underlying density. For example it re-
quires

R
R f

0(x)2
dx > 0. Subsequently, the method performs poorly, for example, for the uniform

distribution [39].

Variable Bin Widths Until now, all methods assumed a constant width of bins h. One different
approach is however, to choose the bin widths h j such that the bins are (approximately) equiprob-
able, p j = n j/n ⇡ 1/m.
An optimal number of bins m can is obtained with a criterion introduced by Agostino [17]:

m = 4

 
2n

2

(F�1(a))2

! 1
5

, (19)

where F�1(a) is the inverse of the cummulative distribution function of the standard normal. a
is the one-sided confidence. a = 0.05 is a common choice.

2.3.2 Criterion Based Binning

Criterion-based binning methods are imposing a criterion on the binned data set. The bin edges
are varied to optimize said criterion. These techniques often utilize a Bayesian approach. We will
neglect a thorough discussion of Bayesian inference. Inclined readers can find them in textbooks
such as [29]. In short: Bayesian statistics makes inferences about the model parameter q given the
sample X with Bayes theorem p(q |X ) µ p(q)p(X |q). When necessary, we will briefly cover
important terms in footnotes.

Knuth’s Bins Knuth [39] utilizes a bayesian approach on the piecewise constant histogram
model described in section 2.2.6 to optimize the bin width. The likelihood of the sample {xi}i

=X

to take on the specific values {x
0
i
} = X

0 follows a multinomial distribution with a different pre-
factor (which - of course - still integrates to 1). It is calculated as

p
�
X = X

0|~p,m, I
�
=
⇣

m

V

⌘
n m

’
k=1

p
nk

k
(20)

11
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with ~p = {p1, p2, . . . , pm�1} the probability mass of the m bins. The nk are the respective number
of data points. The probability of the m

th bin, pm, is given by the normalization condition pm =
1�Âm�1

k=1 pk. The volume or range of the data V is given by V = Â j h j. I is the prior knowledge
about the problem. The n j are the number of data points in the j

th bin and n = Â j n j.
The author assumes a uniform PMF for the number of bins

p(m) =

(
1
C

if m 2 [1,C]

0 if m /2 [1,C]
(21)

with C the maximum number of bins considered. Next, he chooses the Dirichlet distribution with
parameter vector ~a of uniform constituents ai = 1/2 as an non-informative prior. It reads

P(~p|m, I) =
G
�

m

2
�

G
� 1

2
�m

  
1�

m�1

Â
k=1

pk

!
m�1

’
k=1

pk

!� 1
2

(22)

The Dirichlet distribution is the Jeffreys’ prior3 to the multinomial likelihood [38, 31, 7]. Ad-
ditionally, it is the conjugate prior4 to the multinomial likelihood in equation (20). Hence, the
posterior is also a Dirichlet distribution.
According to Bayes theorem, this posterior is proportional to the product of priors and the likeli-
hood,

p(~p,m|X , I) µ p(~p|m, I) p(m|I) p(X |~p,m, I) .

Thus, with equations (20, 21, 22) and some algebra, the author obtains the following posterior:

p(~p,m|X , I) µ
⇣

m

V

⌘
n G
�

m

2
�

G
�1

2
�m

 
1�

m�1

Â
k=1

pk

!
m�1

’
k=1

p
nk�1/2
k

.

To obtain the posterior probability in terms of the number of bins m, he integrates over all possible
values5 of ~p. He arrives at

p(m|X , I) µ n logm+ logG
⇣

m

2

⌘
�m logG

✓
1
2

◆
� logG

⇣
n+

m

2

⌘
+

m

Â
k=1

logG
✓

nk +
1
2

◆
. (23)

Now the optimal number of bins is found by solving the optimization problem m̂ =
argmax

m
p(m|X , I) for which he provides an algorithm.

Knuth’s method was previously applied to transfer entropy calculation [30].

Minimizing Cross-Validation The cross-validation estimator for a general density estimator f̂

is defined as

Ĵ(h) =
Z

R
( f (x))2

dx� 2
n

n

Â
j=1

f̂(� j)(x j). (24)

Here, f̂(�i) refers to the estimator f̂ that is obtained from the sample if xi were excluded [74]. Thus
each term in the sum yields an density estimate for a datum which did not contribute to f̂ . Now
equation (24) can be rewritten in terms of the bin width h:

Ĵ(h) =
2

h(n�1)
� n+1

h(n�1)

m

Â
j=1

p̂
2
j
.

Here, we sum over the probability masses p j of the m bins. Similar to Scott’s rule this approach
seeks to minimize the cross-validation [68]. Subsequently the solution to the optimization problem
h
⇤ = argminh Ĵ(h) yields the asymptotical optimal bin width h.

3One important property of Jeffreys’ prior p(~q) is its invariant under coordinate transformations of the parameter
vector~q . In Knuths’ model, the occupied probability volume of the elements in ~p is thus independent of the coordinates.

4Distributions are conjugate if both, the prior and posterior are within the same family of distributions; they exhibit
the same structure and might only differ in the specific values of parameters [56].

5That is all vectors ~p in the (n�1) dimensional probability simplex [10].
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Maximum Likelihood of the Cross Validation Chow, Geman, and Wu [16] proposed a differ-
ent approach based on cross-validation. They define the histogram estimator in terms of the bin
width h as

f̂h,n(x) =
1
hn

•

Â
i=�•

[h(i�1),hi)(x)

 
n

Â
j=1

[h(i�1),hi](xi)

!

where A (x) is the indicator function for the set A that equals unity if x 2 A and vanishes
otherwise. The optimal choice of h is now found by maximizing the likelihood-like expression

Lh =
n

’
i=1

f̂
i

h,n�1(xi)

where f̂
i

h,n�1 is the histogram estimator exclusive of the data point xi. The choice for the bin width
is given by the resulting optimization problem h

⇤ = argmaxh Lh.

Shimazaki and Shinomoto squared Error Minimization Shimazakis and Shinomotos method
[65] was initially introduced for time histograms to display changes in rates of events. One rem-
nant of these intentions is modeling the number of data points in a given bin by a Poisson distri-
bution. However, we can apply this method can also for data independent of time. It functions by
minimizing the integrated mean squared error (MISE) for the density estimator f̂ :

MISE =
1

b�a

Z
b

a

E
�

f̂ (x)� f (x)
�2

dx. (25)

where b�a is the range of the sampled data. By now partitioning this range equation (25) can be
rewritten in terms of the m bins of size h:

MISE =
1
h

Z
h

0

 
1
m

m

Â
j=1

E
�
Q̂ j � f (x+( j�1)h)

�2
!

dx (26)

where Q̂ j = ni/nh is the empirical height of the j
th bin. We now denote the average over f (x+( j�

1)h) as an ensemble average on [0,h] to rewrite and decompose equation (26) to

MISE =
Z

h

0
hE
�
Q̂(x)� f (x)

�2i

= hE
�
Q̂�Q

�2i+ 1
h

Z
h

0
h( f (x)�Q)2idx.

= hE
�
Q̂�Q

�2i+ 1
h

Z
h

0
( f (x)�hQi)2

dx�h(Q�hQi)2i.

where we added 0 = hQi�hQi from the second to third line and observe that the outer ensemble
average under the integral vanishes. We now subtract the integral term from the MISE to obtain
the following cost function:

Cn(h) = hE
�
Q̂�Q

�2i�h(Q�hQi)2i. (27)

We now find that E(Q̂) = Q for an unbiased estimator. Thus

hE(Q̂�hE
�
Q̂
�
i)2i= hE

�
Q̂�Q

�2i+ h(Q�hQi)2i.

Resultingly, we can rewrite equation (27) as

Cn(h) = 2hE
�
Q̂�Q

�2i�hE
�
Q̂�hE

�
Q̂
�
i
�2i.
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Now we use the assumption that the probability of data in a bin follows a Poisson distribution.
Hence the variance and mean of the number of data points in bin j, n j, is equal. Thus we get the
mean-variance relation E

�
Q̂�Q

�2
= E(Q̂)/nh.

We then finally obtain

Cn(h) =
2
nh

E
�
Q̂
�
�hE

�
Q̂�hE

�
Q̂
�
i
�2i

for the cost function. In this method the solution to the optimization problem argminhCn(h) = h
⇤

gives the optimal bin widths, h
⇤. Therefore, E

�
Q̂
�

is replaced by the the expectation value of the
bin count given by the sample partition. Hence, we optimize

Cn(h) =
2n̄ j �sn j

(nh)2 (28)

where n̄ j is the mean data count of the bins, and sn j
the respective variance.

Akaike Information Criterion Akaike’s information criterion (AIC) [2] scores the goodness
of a model considering their different number of parameters. Therefore AIC value has to be
minimized for each candidate. The lowest score marks the best choice. AIC can be applied to
select histogram bin width [72]. The AIC is a function of the maximum likelihood L and defined
as

AIC(L) =�2ln(L)+2k, (29)

where k is the number of independent parameters of the model. k = m in the case of a histogram
with m bins. The likelihood of the histogram is

L =
n

’
i=1

f̂ (xi) =
m

’
j=1

p
n j

j
= L(p),

where pi is the probability mass of the j
th bin and n j the number of data points inside. We now

employ the constraint pi � 0 and obtain for the bin width h the condition h ·Â j p j = 1 ) Â j p j =
1/h. We then maximize L with p j = n j/nh. Therefore, we must choose m,h to minimize

m� ln

 
m

’
j=1

⇣
n j

nh

⌘
n j

!
= m+n ln(n)+n ln(h)�

m

Â
j=1

n j ln(n j). (30)

If the histogram is based on a small sample, the corrected AIC yields better results [75]. To account
for a small sample, a first order bias correction is multiplied to the model dimension:

AICc(L) =�2ln(L)+
2k

n/n�k�1
. (31)

Bayesian Information Criterion Based on bayesian reasoning Schwarz [61] proposed to scale
the model dimension term (in our case the number or bins m) of the AIC in equation (29) by ln(n)/2.
One must therefore minimize

m

2
ln(n)+n ln(n)+n ln(h)�

m

Â
j=1

n j ln(n j). (32)

2.3.3 Clustering Based Binning Methods

Clustering algorithms serve to cluster data into distinct groups which are similar within. Clus-
tering approaches differ from the above methods because they group data bottom-up, whereas
binning introduced the top-down bin edges. However, this distinction is not sharp since sample
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characteristics such as the IQR, n j,s influence the binning. Nevertheless, this influence is to a
much lesser extent than in clustering methods. Though the strengths of clustering algorithms are
more apparent in higher dimensions, several authors employed them for binning on the number
line, for example [48], [50], and [73]. We translate the clusters into bins by utilizing a Voronoi
partition [11] of the data range.

k-Means Clustering Generally, k-means is an algorithm that clusters data into k clusters.
Researchers usually apply the algorithm for multidimensional feature spaces. For our application,
only the one-dimensional case is relevant. To stay consistent with the literature, we will discuss
the multidimensional procedure nonetheless. The algorithm in its current form was proposed by
Lloyd [43], but I will follow the instructive explanation laid out by Mackay [45] in this chapter.

The first thing needed for the k-means algorithm is a distance measure. We will use the simple
squared euclidean distance:

d(~x,~y) = Â
i

(xi � yi)
2 .

The K clusters are parametrized by their respective means mk, the centers of the clusters. In the
beginning, we somehow initialize them. If possible, one adjusts the according to existing knowl-
edge in order to value to speed up convergence. Alternatively, we apply random initialization.
Then follows the assignment step, where each data point xi is assigned to the cluster K with the
nearest mean d(mk,xi)  d(mk0 ,xi). in case of d(mk,xi) = d(mk0 ,xi) the data is assigned to the
cluster with fewer attached data. Should that be equal, too, one could resort to random assignment
between the cluster candidates. After the assignment the update step follows. This means that the
means mk are recalculated

mk(x) =
Ân r

n

k
x
(n)

Rk

. (33)

Here the r
(n)
k

are the cluster assignment function where Rk = Ân r
(n)
k

and rk(x) = 1,0 depending on
whether mk is the closest mean to x or not. Now the reassigment and subsequent recalculation of
the means are repeated until the assignments do not change anymore. We subsequently apply a
Voronoi partition to generate bin edges from the cluster assignment to the data.

Expectation Maximization Clustering with Gaussian Mixture Model The expectation-
maximization algorithm is based on fitting a family of densities g(x|F) to the data x 2X where F
are the parameters of the densities [21]. We now iteratively repeat two steps for the algorithm: the
expectation and the maximization step applied with the model functions. Generally we consider a
probability P(X ,Z |F) of the measured data X and the unknown values Z (the cluster assign-
ment). Since F is unknown, it may be initialized randomly or by guessing. Z is also unknown.
Hence the maximization of the marginal probability P(X |F) serves as a proxy. Now in the t

th

expectation step one calculates

Q(F|F(t�1)) = E
Z |X ,F(t�1) (P(X |F)) . (34)

With the maximization step we subsequently calculate Q(F(t)|F(t�1)) = argmaxF Q(F|F(t�1)).
We repeat these two steps until conversion. This model is similar to k-means in the sense that the
fitted density parameters are iteratively updated. However, it differs since we are only calculating
probabilities here, whereas, in k-means, cluster affiliation is a definite criterion.
In the scope of this thesis, we will apply Gaussian densities because of expected white noise on
data and the existing implementation in python [52]. As a result, we obtain the final binning by a
Voronoi partition between adjacent points assigned to different clusters.

15



2 DATA ANALYSIS METHODOLOGY

DBSCAN Clustering The acronym DBSCAN stands for the density-based spatial clustering of
applications with noise [24]. The algorithm relies on the following definitions: (1) the data point
p is a core point if at least minPts points are within an e neighborhood. (2) a point q is said to
be directly reachable from p if it is within the distance e . It is (3) reachable if there is a chain of
subsequently direct reachable points from p to q. (4) We classify points that are not reachable as
outliers.

The algorithm does not require a specified number of clusters. Nonetheless, it depends on the
parameters minPts and e . Then the core points are determined. We then group core points within
a cluster. Non-core points are assigned to clusters if they are reachable from the cluster points. We
classify leftover points as outliers. Concerning our binning method, we apply a Voronoi partition
to bin the different clusters. Doing this, we regard Outliers as a separate cluster.

Mean Shift Clustering The mean shift algorithm was first proposed in 1975 [28]. It is a mode-
seeking algorithm that works by shifting the means of clusters using a kernel function K(x) [14].
In this thesis, we will apply a flat kernel for clustering. For the algorithms iterated steps, we
compute the mean of the data for a sample subset S 2 X , where S is a scaled (hyper-) sphere
of the same dimension as X . Now the mean is calculated as

m(x) =
Âsi2S K(si � x)si

Âsi2S K(si � x)
. (35)

In the subsequent mean shift step we change S to be centered at m(x). We repeat these two steps
until convergence. To apply this mode-seeking algorithm in clustering, initialize the mode-seeking
step at every data point in the sample, and then, the means are simultaneously updated. Naturally,
upon convergence, some data points might be assigned to multiple subsets. To achieve a unique
classification, we assign data points to the cluster which contains the most points. The diameter of
the neighborhoods S is a tuning parameter of the model commonly referred to as bandwidth.

Agglomerative Hierarchical Clustering Agglomerative hierarchical clustering [19] is a
bottom-up hierarchical clustering method. It starts with every data point assigned to its cluster.
Subsequently, we merge the two clusters that minimally increase the total in-cluster-linkage dis-
tance in each iteration step. We can apply several norms to determine the linkage distance. In
this thesis, we used Euclidean distance. The algorithm terminates if it attains a preset number of
clusters.

2.4 Bivariate Relationships between Samples

If one obtained two or more time series, one is interested in their pairwise relationship. In this
chapter, we will cover the bivariate measures applied in this thesis. These measures differ in the
type of relationships between variables they can capture.
We can understand the relationship between two variables as the following mapping F from one
variable V1 to another V2:

F :V1 !V2

x1 7! x2.

The empirical measurements will contain an additional noise contribution that subsumes random
or systematic measurement errors and influences onto V2, which originate outside the studied
bivariate system.
The map F can be linear or non linear. In the first case it fulfils additivity, F(u+v) = F(u)+F(v)
and homogeneity, F(c ·u) = c ·F(u). If F does not fulfil these properties, the relationship between
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V1 and V2 is non linear.

2.4.1 Linear Measures

Linear measures quantify the relation between two time-ordered samples. Thus, they implicitly
assume a linear relationship between the variables. However, this assumption includes the notion
that small changes in one variable correspond to small samples in the other. This circumstance is
different for non-linear measures that we will discuss in the subsequent section.

Product-Moment Correlation The Product-Moment Correlation or Bravais-Pearson-

Correlation is a standard measure to quantify the association between samples of variables. It is
a symmetric and linear dependency measure. We can calculate the correlation between variables
X and Y as

rxy =
Ân

j=1(x j �µx) · (y j �µy)q
Ân

j=1(x j �µx)2
q

Ân

j=1(y j �µy)2
(36)

for samples of length n and µX ,µY the means of the sample of variables X and Y respectively.
As such, rXY is the ratio of the covariance by the product of the constituent variables standard
deviations. Therefore it requires metric scales. The measure is normalized to the interval [�1,1].
Positive values indicate a directional temporal evolution of the two variables, whereas negative
values indicate anti-directional evolution. In essence, r is a non-parametric measure and only
requires the variance and covariance of the variables to exist, which is true for finite datasets.
However, the measure only exhaustively captures the association if a normal distribution of X and
Y is assumed. It does not capture non-linear relationships [9].

Spearmans Rho Dissimilar to the Product-Moment-Correlation Speaman’s r is defined for or-
dinal scaled variables as well. Though in literature also referred to with the letter r , we will use
P for Spearman’s r to distinguish both quantities. P is the Pearson correlation the rank variables
rX ,rY of the samples X and Y . Therefore it is symmetric and linear as well. When we apply P
to metric data, the ranking is a particular choice of the information destroying mapping jD (see
equation 2). P reads

P = rPearson
rX ,rY

=
cov(rX ,rY )

srX
srY

= 1�
Ân

j=1 d j

n(n2 �1)
, (37)

where d j = rX(x j)� rY (y j) is the rank difference. The last equality only holds if the ranks are
integers.

In figure (2.1) we see the values of r and P for different datasets. In (2.1a), we see that both
measures are consistent for the linear association. However, r is more sensitive to outliers. Both
measures cannot quantify the nonlinear properties of data. That is evident in figure (2.1c). Though,
if the variables are monotonically but nonlinearly related, P exhibits a higher association than r
due to the rank mapping.

2.4.2 Non-Linear Measures

The nonlinear measures we utilize in this thesis originated in information theory. We will conduct
a more comprehensive derivation of the measures in section (3), particularly (3.3). These measures
are non-parametric and capture linear and nonlinear associations as they quantify the information
shared between variables. The first measure we are introducing is mutual information.
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2 DATA ANALYSIS METHODOLOGY

(a) Linear relation: r = .94, P = .94 (b) Linear relation with outliers: r = .69, P = .81

(c) Non-linear sine relation: r = 0.00, P = 0.00 (d) Non–linear cubic relation: r = .92, P = .99

Figure 2.1: Values for Pearsons r and Spearmans P for different datasets. For linear relations
both measures produce equal results (2.1a). The Sperman correlation is less influenced by outliers
(2.1b). Both measures fail to correctly quantify non-linear relations (2.1c and 2.1d).
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Mutual Information Mutual information, MI, is a symmetric measure to quantify the amount
of information about a variable X that is encoded in variable Y . MI is given by

MI(X ,Y ) = H(X)�H(X |Y ) = H(X)+H(Y )�H(X ,Y ). (38)

MI is a symmetric measure and quantifies the amount of information one knows about one con-
stituent variable of the measure if one knows the other one. In this thesis, we will not comprehen-
sively cover MI. However, we will discuss the measure since we can understand transfer entropy,
the primary method in this thesis, as MI conditioned onto the variables pasts.

Transfer Entropy Other than the previously discussed measures, transfer entropy, TE, explicitly
requires time series data. It was initially introduced by Schreiber [60] as an asymmetric measure
capable of distinguishing drive and response in coupled time series systems. As stated above,
we can understand TE as conditional mutual information of the influenced time series Yt and the
lagged time series Xt�1:t�K conditioned on the history of the influenced time series Yt�1:t�L. There-
fore, we can rewrite TE in terms of entropies. The resulting formula for empirical measurements
xt 2 Xt , yt 2 Yt reads

T EX!Y =
T

Â
t=1

p(yt ,yt�L:t�1,xt�K:t�1) log
✓

p(yt |yt�L:t�1,xt�K:t�1)

p(yt |yt�L:t�1)

◆
(39)

= H(Yt |Yt�L:t�1)�H(Yt |Yt�L:t�1,Xt�K:t�1), (40)

where p is the PMF of the variables. Usually, p is unknown and estimated from the data, for
example, by methods introduced in section (2.2.6). One part of this thesis is the development
and evaluation of an adapted estimator. This method is derived in in section (4) and evaluated in
section (5.7).
K and L are the lags of the time-series Xt , Yt (or their samples, Xt ,Yt , respectively). These lags
determine how much of the past the TE s into account for the TE calculation. Often one chooses
K = L.

Non-Linearity Quantification To quantify the amount of non-linear information flowing be-
tween X and Y , we must deduct contributions from the linear association. For the non-linear
measure h , we define the h-non linearity measure as

hNL(X ,Y ) = min
✓

h(X ,Y )�hh̃(X ,Y )i
h(X ,Y )

,0
◆
. (41)

We have h = TE. The tilde refers to the value of the measure h for surrogate data, that is, the
preprocessed data which preserves linear but destroys nonlinear association between the variables
X ,Y (see section 2.5.3). The bar refers to the mean over several iterations as random nonlinearities
may occur in the surrogatization process. For this thesis we calculate hNL with 25 surrogate
samples.

2.5 Data Pre-Processing

In order to calculate the measures introduced above, we may preprocess the data with the methods
discussed in this chapter.

2.5.1 Rank-Ordered Remapping

The rank-ordered remapping algorithm maps a source Y time series onto a target time series X

with a specific distribution. We perform a rank-ordered remapping by applying three steps:
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2 DATA ANALYSIS METHODOLOGY

1. obtain an ordered source distribution either by random sampling or utilizing an empirical
distribution of equal length to the target.

2. apply a rank mapping onto both time series. If the values are not unique, we add slight noise
to the variables to implement a random order of duplicate values.

3. reorder the source time series such that the rank time series of X ,Y are identical.

Now the source time series has similar evolution in time as the target but follows the specified
distribution. A remapping of a nonlinear target time series with a gaussian source destroys static
nonlinearities caused by nonlinear measurement functions M if subsequently the reordered source
is used. We can, therefore, purely test for dynamic nonlinearities.

2.5.2 Rescaling

Rescaling is a remapping (shifting, squeezing, or stretching) of the data onto a specified interval
that preserves the relative shape of the distribution. This approach allows to pass data into the same
range and thus easily apply identical discretization or other operations to different data. Rescaling
the sample X onto a range R is conducted by extracting the rescaled value x

0 of the value x for
every x 2 X in the sample via

x
0 =

x�min(X )

max(X )�min(X )
· (max(R)�min(R))+min(R). (42)

2.5.3 Surrogates

Data surrogatization aims to destroy a data set’s non-linear properties while preserving all other
(linear) ones, namely, the data distribution, autocorrelation function, and power spectrum.

Bootstrap Surrogates Bootstrap surrogatization is the simple act of shuffling the time series
sample. Therefore the real-space distribution is trivially conserved. However, autocorrelation and,
therefore, by the Wiener-Khinchin-theorem, the power spectrum is destroyed.

Fourier Transform Surrogates Fourier Transform (FT-) surrogates are a standard surrogati-
zation method. They adapt the data by phase randomization within the frequency domain. To
generate them, one applies the following steps [58]:

1. We map the sample X of the variable X into the frequency domain with a FT. The linear
properties are stored within the amplitude, non-linear ones within the phases.

2. The algorithm destroys the non-linear properties by adding uniform random numbers drawn
from the phases from the [0,2p] interval to the phases.

3. Subsequently, we apply the inverse FT to the adapted data in the frequency domain and
obtain surrogate data within real space.

We repeat and subsequently average the surrogatization process in order to obtain stable results.
This surrogatization method preserves the power spectrum and, therefore, by the Wiener-
Khinchin-theorem also the autocorrelation. In contrast, phase randomization destroys the non-
linear properties. However, the method does not reproduce the time domain distribution.
One can address this drawback by employing Amplitude Adjusted FT Surrogates. These differ
from FT surrogated by initially applying a remapping onto a gaussian distribution, the subsequent
execution of the FT surrogatization algorithm, and a final remapping onto the initial distribution.
However, the final remapping has an unknown effect on the phase randomization and whitens the
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power spectrum. One may address the whitening by Iterative Amplitude Adjusted FT surrogatiza-
tion, which stores the Fourier coefficients after an initial FT of the sample, subsequently shuffles
the time domain data, performs a FT of which the coefficients are replaced by the initially stored to
force the desired power spectrum. Then an inverse FT is applied, and the result is remapped onto
the initial distribution to force the initial sample PDF. This process is iterated from the shuffling
step until it achieves convergence or a maximum iteration number. While this process preserves
autocorrelation, power spectrum, and time-domain distribution, the remapping effect on the phase
randomization is unknown. Both adapted FT surrogatization methods might introduce artificial
nonlinearities through the backdoor. Therefore we will only apply simple FT surrogates within
this thesis.

2.5.4 Sliding Windows

We calculate the introduced measures for the whole time series. However, we assume the dis-
tributions of the variables to be time-dependent (section 2.1.1). To study the temporal evolution
of these measures, we partition the whole sample X into time slices Xt�t0:t of size(s) t0. These
slices can be of a fixed or variable size. The latter can occur if we want to study the measure on
a fixed time interval (e.g., daily), but the number of data points within a day varies. The whole
procedure yields a new time series of the measure of interest with downsampled time resolution.
For fixed-size sliding windows, we start the measure calculation for the values with indices [0, t0],
then for [1, t0 +1] and so on. The resulting measure time series is of length n�t0. Thus subsequent
windows largely overlap, and the resulting time series provides a detailed picture of the measure
evolution. One may apply bigger step sizes for computation-intensive measures for large samples.
However, the step sizes remained  t0. In the context of this thesis, where we do not mention step
size, we utilized unit steps.

2.6 Data Post-Processing

After calculating all the measures, we want to evaluate the results further and apply data post-
processing methods from network theory. Of course, this field and its methods go far beyond what
we will discuss, but we will limit the discussion to the aspects applied in this thesis.

2.6.1 Networks

A network is a tuple containing two sets. One set contains the nodes or vertices of the network,
the other the links or edges that connect the nodes [4]. These edges can have a weight associated
with them. Additionally, they can be undirected if the direction of a link is symmetric or directed
if the weight of the edge connecting node i and j is different from the one connecting j to i,
wi j 6= w ji. Given the asymmetry of the TE measure, we will use directed networks in our analysis.

A multitude of network statistics can be calculated. However, we are mainly interested in
network cohesion and thus will only utilize the link density:

hLi=
Âwi j

N · (N �1)
(43)

with wi j 2 [0,1] the normalized weights between the N nodes of the network. As such, hLi quan-
tifies the fraction of actual by possible connections within the network.
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3 Development of the Transfer Entropy Measure

This chapter will cover the fundamental underpinnings of information theory to derive the transfer
entropy measure. Therefore we will start with the information entropy and attempts to proper
generalizations to continuous variables. Subsequently, we will introduce the Kullback-Leibler
divergence as a measure to quantify (dis-) similarity of probability mass functions. We will then
use this measure to derive mutual information and transfer entropy.

3.1 Information Entropy

The information entropy was introduced by Claude Shannon [64] as a measure for the information
contained within a set of measurements X = {x1, . . . ,xn}. Each value has an associated probabil-
ity mass or density, depending on whether we sample measurements from discrete or continuous
variables. We write p(xi) = pi. Therefore, every value has an associated information content or
surprisal

I (Ei) = log
a
(pi) . (44)

The base a of the logarithm determines the units we measure information in. It is often set to
a = 2, corresponding to bit units. Having a = 10 would correspond to digits and a = e to nats.

For discrete variables, the Shannon Entropy is a measure that fulfills the following desiderata.
The quantity

1. is continuous in the pi,

2. if the events or measurements occur with uniform probability, pi = 1/n 8pi, the measure is a
monotonic increasing function of their number, and

3. it should the events be split into successive events the quantity is a weighted sum of individ-
ual entropies.

The only measure satisfying these three conditions is

H(X) =�K ·
n

Â
i=1

pi log
a

pi. (45)

with K > 0, a constant. We can interpret it as the average surprise of realizing a certain xi from the
random variable X in the measurement. Shannon chose K to be unity, and we will continue with
this convention for now but later adapt it for normalization purposes. Additionally, we will drop
the base of the logarithm a in the notation for simplicity and use a = e throughout this thesis.

When we index X with i and Y with j, the information entropy can be generalized to a joint
probability for joint distributions as

H(X ,Y, . . .) =� Â
i, j,...

pi, j,... log(pi, j,...). (46)

It follows that H(X ,Y ) H(X)+H(Y ).
Similarly, we obtain conditional entropy

H(X |Y ) =�Â
i, j

pi j log(pi| j). (47)

Therefore, H(X ,Y ) = H(Y )+H(X |Y ) and

H(X)+H(Y )� H(X ,Y ) = H(Y )+H(X |Y ) (48)
) H(X)� H(X |Y ). (49)

These measures quantify the joint or conditional surprisal of the measured variable.
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3.2 Entropy Estimation of (Quasi-) Continuous Distributions

There are several attempts to generalize the above definition (45) to continuous variables. How-
ever, these generalizations exhibit specific problems, which we will cover in this section.

3.2.1 The Differential Entropy

A naive generalization of the entropy to continuous variables is the differential entropy of the
probability density function (PDF), f (x) of a random variable:

h[ f ] =�
Z

R
f (x) log f (x)dx. (50)

It is obtained by simply substituting the summation in equation (45) with integrals (and using
K = 1). However, this generalization lacks certain properties of the discrete Shannon entropy.

Negativity For instance, the differential entropy of an exponential random variable with PDF

Exp(x;l ) =

(
le

�lx
x � 0,

0 x < 0.

is calculated as
h[Exp(l )] = 1� ln(l )

which becomes negative for l > e. When we understand entropy as an average of surprisal
within a set of events, it is unclear how we can interpret a negative differential entropy since it is
an average of the suprisals of the events in a distribution. These surprisals have a lower bound of 0.

The Continuum Limit of the Shannon Entropy Another problem of the differential entropy is
that it is not a valid extension of the Shannon Entropy [37], because of the following circumstance.
If one discretizes a continuous random variable on the support [a, b] via binning with bins of
equal6 size D, the mean value theorem yields that there is an xi in each bin [a+(i�1)D, a+ iD]
such that

f (xi)D =
Z

a+iD

a+(i�1)D
f (x)dx.

We can now associate a probability pi = f (xi)D to each bin on the support of f (x). We additionally
know that f (x) � 0, since f is a PDF. If we let terms with f (xi) = 0 vanish, we can define the
following extension of equation (45):

H
Binned[ f ]⌘�Â

i

f (xi)D log( f (xi)D) ,

where we sum over all bins i. When we now let D ! 0:

H
Binned[ f ]!� log(D)�

Z

R
f (x) log f (x)dx (51)

6=h[ f ].

6We use equal size bins here for simplicity. The result is the same for differently sized bins as long as these bins
approach the limit of zero width equally fast. The equivalence can be shown by setting D to the smallest and biggest
bin and observing that the resulting expression must respectively be greater and smaller than the limit of equation (52).
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Here we have additionally the term � log(D) ! �• in the limit of D ! 0. We can therefore
conclude that the differential entropy is not the continuous limit of the Shannon Entropy. However,
both quantities are connected via the relation:

h[ f ] = lim
D!0

(HD + log(D)). (52)

Opposed to the expression in equation (51), the formula (52) remains finite in the continuum limit,
D ! 0.

3.2.2 The Limiting Density of Discrete Points

There are, however, further problems with both the differential entropy and the modifica-
tion introduced above. Namely, they are not invariant under parameter changes. Jaynes [37]
utilizes a formalism labeled the limiting density of discrete points to derive an invariant expression.

Suppose, we sample increasingly more points x into our dataset, D = {xi}i
, with |D| = n. In

the limit n ! • the density of points then converges to the measure function m(x). That is

lim
n!•

1
n
|{x|x 2 D\ [a,b]}|=

Z
b

a

m(x)dx

If this limit is sufficiently well behaved, differences of adjacent data points xi+1 � xi behave as

lim
n!•

n(xi+1 � xi) =
1

m(xi)
(53)

and the discrete probabilities pi of (binned) data points in D will go over into a continuous PDF
f (x) with

f (xi) =
pi

(xi+1 � xi)
.

When we rearrange the terms and use equation (53), we obtain

pi !
f (xi)

nm(xi)

as a continuum limit of the respective bin probabilities. We now use equation (53) again to obtain
the differential

lim
n!•

1
nm(x)

= lim
n!•

xi+1 � xi = dx

and find the Shannon Entropy (45) continuum limit of

H
Discrete[ f ]!�

Z

R
f (x) log

✓
f (x)

nm(x)

◆
dx.

This expression contains the divergent term logn ! •. However, if we subtract this term, we
obtain the finite expression:

H
Continuous[ f ]⌘ lim

n!•
H

Discrete[ f ]� logn =�
Z

R
f (x) log

✓
f (x)

m(x)

◆
dx. (54)

If we now perform a parameter change of the PDF and the measure function m(x),

fy(y)dy = f (x)dx

my(y)dy = m(x)dx,
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then equation (54) transforms to

H
Continuous[ f ] =�

Z

R
fy(y) log

✓
f (y)

my(y)

◆
dy. (55)

From this expression, we can understand why it was necessary to introduce the measure function
m(x). The quantity keeps the entropy invariant. If we do not include it, the parameter change will
introduce additional factors within the logarithm argument.

Still, the expression (55) depends on the PDF of the variable, which is usually unknown.

3.3 From Relative Entropy to Transfer Entropy

It is the purpose of data characterizing measures to quantify and compare data characteristics. The
relative entropy or Kullback-Leibler (KL) divergence is one such measure in information theory.
It quantifies the dissimilarity of two distributions of random variables X and Y with probability
masses PX , j and PY, j for the j

th event:

KL(X ||Y ) = Â
j2X ,Y

pX , j log
✓

pX , j

pY, j

◆
. (56)

However, it is important to note that even if it is sometimes called a distance, the KL does
not fulfill the properties of a metric. Namely, it is not symmetric in its arguments: KL(X ||Y ) 6=
KL(Y ||X).
KL can be expressed in terms of entropies: KL(X ||Y ) = H(X ,Y )�H(X).
To incorporate a conditionality of X ,Y onto some fact Z, we can extend the above measure as

KLX ,Y |Z (X ||Y ) = Â
j,k,z2X ,Y,Z

pX , j,k,z log
✓

pX , j,k|z

pY, j,k|z

◆
. (57)

Mutual Information We can now derive the mutual information as a particular case of the KL
divergence. MI is the relative entropy of the joint probability distribution of two variables X and
Y to the product of their marginal probabilities:

MI(X ,Y ) = KL(PX ,Y (X ,Y )||PX(X)PY (Y )). (58)

Therefore, MI quantifies the KL-distance of the joint process from the joint process with indepen-
dence assumed (in which case the joint probability density is the product of the marginals). The
measure is symmetric, and like the product-moment correlation, it only quantifies the association
between variables without inferring directional information. Since the MI measure is a special
case of the KL divergence, we can also express MI in terms of entropies as

MI(X ,Y ) = H(x)�H(X |Y ) = H(X)+H(Y )�H(X ,Y ). (59)

This expression is the formula stated in the previous section (38).
The MI is non negative since H(X)+H(Y ) � H(X ,Y ) [69]. To bound the measure in the [0,1]
interval we can normalize in one of two ways,

NI(X ,Y ) = 1� H(X ,Y )

H(X)+H(Y )
2 [0,1]

NI0(X ,Y ) = 1� H(X ,Y )

log(mX mY )
2 [0,1] .
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Here m refers to the number of possible values the variables can take (this is the number of bins
for discretized continuous data). These normalizations differ from the one used by Ma [44]. The
author followed the convention by [70] that interprets MI as an information-theoretic analog to
covariance. Thus, he utilized the normalization

NIr(X ,Y ) =
H(X)+H(Y )�H(X ,Y )p

H(X) ·H(Y )
. (60)

We justify this differing choice of normalization by the experimental validation with model
systems in section (5.3). This justification is one key result of this thesis.
Other, more exotic, normalizations exist [30] [51] [47]. We will, however, neglect those in the
scope of this thesis to favor the easier to interpret normalizations above.
Additionally, we will exercise the empirical analysis of normalizations employing model systems
only to the transfer entropy. We choose this restriction to keep the scope of this thesis concise.
Nonetheless, we shall cover the MI for a comprehensive derivation and theoretical justification of
the transfer entropy measure. We do so since the transfer entropy measure is interpretable as a
conditional case of the MI.

The MI, as stated here, is an entropy-derived measure and, as such, only defined on nominal
scales. Since the formula does not depend on the magnitude of data, jD = Id is a possible choice
for ordinal and discrete data. To employ this jD, we merely have to let go of the connotation
of magnitude to the numeric labels. Continuous metric variables, on the other hand, need
discretization. Similar to the mode, values in continuous sets repeat too sparsely for the measure
to yield accurate results.
Though generalizations of MI to continuous data exist, they exhibit problems. We discuss these
problems in the preceding section (3.2). Therefore, we will apply a mapping jD to discretize the
data and then apply formula (38) or its normalizations. The derivation of an optimal jD is one of
the main contributions of this thesis.

For time series, this directional information X !Y is introduced into the measure by applying
a lag to one time ordered sample:

MIt(Yt ,Xt) = MI(Yt ,Xt�t) =
n

Â
t=1

p(yt ,xt�t) log
✓

p(xt ,yt�t)

p(yt)p(xt�t)

◆
. (61)

We can adapt this quantity to capture the dynamical structure of the association of the variables.
Therefore, we interpret the time series as a Markov process. To do so, we condition the probability
masses of the time series onto the past: p(yt)! P(yt |yt�1, . . . ,yt�t).
We now want to control for both self-information as well as information flow between variables.
This approach serves to quantify the deviation of the generalized Markov property to sole self
influence

P(yt |yt�1, . . . ,yt�K) = P(yt |yt�1, . . . ,yt�K ;xt�1, . . .xt�L)). (62)

We can achieve this goal by employing the Kullback-Leibler divergence.

Transfer Entropy The resulting relative entropy is called transfer entropy (TE) [60]:

T EX!Y =
T

Â
t=1

p(yt ,yt�L:t�1,xt�K:t�1) log
✓

p(yt |yt�L:t�1,xt�K:t�1)

p(yt |yt�L:t�1)

◆
. (63)

Here, we explicitly allow for different bounds of temporal influence of the past K,L of the
variables Xt ,Yt . We will determine the proper choice of K,L by evaluating the autocorrelation
function. We choose the lag for the TE to be the temporal shift t for which the self-correlation
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vanishes.
As for all entropy derived measures, the base of the logarithm determines the units of the quantity.
It is important to note that the TE measure is explicitly asymmetric.

As stated here, TE is only defined for discrete signals. This circumstance is especially apparent
when we rewrite equation (63) in terms of entropies:

T EX!Y = H(Yt |Yt�L:t�1)�H(Yt |Yt�L:t�1,Xt�K:t�1). (64)

It is ambiguous how to evaluate this expression for continuous variables. The differential entropy
does not fulfill non-negativity and is not the continuum limit of the Shannon entropy. However,
we cannot apply the suggested corrections (see 3.2.1, 3.2.2) since the PDFs are unknown.
To solve this problem, one could apply density estimation methods such as kernel density
estimators. However, these approaches still suffer from finite sample effects and introduce
computational overhead. Alternatively, one can apply the histogram estimators discussed in
section (2.2.6). This estimator, however, is, in essence, a discretization and coarse-graining or
binning, jD, into discrete variables (see section 2.3) of the data for which we can then apply the
above expression (63).
In that case, the choice of a suitable jD is crucial. Therefore, we want to apply a PMF estimator
such as displayed in equation (11) as opposed to PDF estimators as in equation (6). We justify
this choice because, generally, the probability of the discrete PDF classes only integrate but does
not sum to unity, resulting in underestimating the NTE value. In chapter (5.7), we will conduct
studies that will show the extreme sensitivity of (normalized) TE values on the applied jD. This
finding is consistent with results from [30].

When d quantifies the level of the discretized resolution after applying jD = jD

d , in the d ! 0
limit this measure is finite and independent of the partition jD. However, from equation (63), we
can infer that TE explicitly depends on the sample length. Additionally, for quantized continuous
variables, TE depends on the level of preserved detail, that is, the number of discrete values in
the target set of jD. However, in the chapter (5.4), we will determine that this limit requires
large samples, and we will evaluate the finite sample, d > 0 performance of the transfer entropy.
To mitigate these sample effects, we seek to normalize TE and therefore express it in terms of
entropies as in equation (64).

This yields two methods of normalization. The first is straightfoward. We divide TE by its
maximal value, H(Yt |Yt�l�1:t�1) = H (Yt ,Yt�L:t�1)�H (Yt�L:t�1) which results in the expression:

H NT EX!Y = 1� H (Yt ,Yt�L:t�1,Xt�L:t�1)�H (Yt |Yt�L:t�1,Xt�K:t�1)

H (Yt ,Yt�L:t�1)�H (Yt�L:t�1)
. (65)

The second normalization is by logm with m the number of values of (the discretized) variable Y .

logm NT EX!Y =
T EX!Y

logm
. (66)

This holds since H(Yt |Yt�l�1:t�1)  H(Yt)  logm (see section 3.1 above). We will refer to
these normalisations as H NTE and logm NTE. The H NTE normalization is commonly utilized
in literature. See for example [15], or [23].
These normalizations differ from the ones utilized by [44]. He applied the same normalization
as for the mutual information in equation (60). Nonetheless, the evaluation of the normalization
utilized by Ma is implicitly covered in the subsequent analysis in section (5.3). This coverage is
due to the fact that the model systems univariate entropies are identical. Thus for L = K we have
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p
H(Xt |Xt�K)H(Yt |Yt�L)⇡

p
H(Yt |Yt�L)2 = H(Xt |Yt�L).

The abovementioned exotic normalizations for mutual information can be adapted for TE
interpreted as conditional MI. Nonetheless, we neglect a thorough analysis of them as these
normalizations offer no intuitive interpretation and are more complex and thus disfavoured by the
principle of Occams razor.

The H NTE normalisation has the problem that for H(Yt |Yt�l�1:t�1,Xt�l�1:t�1) = 0 and
H(Yt |Yt�l�1:t�1) = e the normalized TE converges to one in the limit of e ! 0 even though the
transferred information approaches zero.
The logm NTE normalization, on the other hand, yields difficulties in interpretation. It reaches
its maximum value not when the possible information transfer x ! y is maximal, but only when
additionally H(Y ) is at its maximum. While H NTE might feel more intuitive, we will see in the
chapter (5.3) that logm NTE offers advantages when developing a robust TE calculus for finite
datasets.
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4 INCORPORATION OF BIN SIZE INTO DISCRETIZED PROBABILITY ESTIMATION

Figure 4.1: The figure displays the probability of a discretized value mapped from a continuous
distribution with the adapted estimator. This probability depends linearly on the fraction of volume
(D = 3) and data points within it.

4 Incorporation of Bin Size into Discretized Probability Estimation

The methods we introduced in section (2.3) are distinguished by the way they partition the
data. Many of them utilize fixed-width bins. Others, however, use the values of the different
measurements for clustering and subsequent partitioning. In that case, the size of the bins does
hold information about the sample. Therefore, in this chapter, we will develop an adapted
probability estimator within this chapter. The resulting estimator should incorporate the bin sizes
and thus recover the common probability estimator value for equal-sized bins. Additionally, the
estimator should perform better than the common estimator. The operationalisation of better is
non-trivial. We will evaluate the consistency and thus score variance. Since we are dealing with
an estimator that should perform a consistent discretization of a continuous variable, it is desirable
but no necessity that the continuum limit of the estimator is the variables PDF.

Regarding the novel estimator, we have no justification to either overvalue the contribution
of the number of data points within or the size of the bin. Thus we aim for equal contribution.
To quantify the relative contribution of the components, we will normalize both terms by the
total number of data points and the total range occupied by values. Since the contribution of the
volume term is proportional to the exponent of the data dimension, D, we will take the D

th root of
the volume term. Lastly, we apply a normalization constant such that the individual probabilities
sum to unity. The resulting estimator reads:

f̂n(x) =
1
C

m

Â
j=1

n j

n

D

r
v j

v
x2B j

(67)

where n j/n is the fraction of data points within the j
th bin, D

p
v j/v is the D-root of the fraction of the

total volume of non-empty bins and C is a normalisation constant.
Figure (4.1) shows the value of f̂n with the fraction of data points and sample volume. We can see
that the estimator is linear in both quantities, and they have an equal contribution.
We will now continue to discuss several theoretical properties of this estimator. An evaluation

with model systems is discussed in chapter (5.5).
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4 INCORPORATION OF BIN SIZE INTO DISCRETIZED PROBABILITY ESTIMATION

4.1 Expected Value

We will first calculate the expected value of our novel estimator (equation 67) and therefore look
a the one-dimensional case, D = 1. The volume v j of the bin containing a given x is fixed. The
normalization C is a constant. Thus,
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f̂n(x)
�
= E
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m
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n j
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D
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v j
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We can now define p j =
R

B j
f (u)du and apply the mean value theorem. Subsequently, we obtain
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v j
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for at least one x
⇤ 2 B j. This result is easily generalized to D > 1 for which one obtains

E
�

f̂n(~x)
�
=

D

q
v

D+1
j

Cv
f (~x⇤) . (76)

We can therefore conclude that the estimator rescales the actual probability of the underlying
distribution. Additionally, the magnitude of this scaling depends on the volume v j of the bin B j

containing x. This circumstance makes it dependent on the binning methodology. The rescaling
effect makes f̂n inferior to the usual histogram estimator. Nonetheless, the explicit dependence
on v j allows for the steering of the rescaling magnitude with the choice of binning. Since we are
not interested in absolute values of the entropy, the ability to tune the bias introduced by binning
might be worth the tradeoff when we apply the estimator for entropy analysis.

4.2 Bias

We will now proceed to calculate the bias. Therefore we again set D = 1. Additionally, we assume
the derivative of the PDF to be bounded | f 0(x)| L1. Resultingly, | f (x)| L2 (see appendix 8.2.1).
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Let L be the larger of L1,L2. We further assume M to be the biggest bin. Then

bias
�

f̂n (x)
�
= E

�
f̂n (x)

�
� f (x) (77)

=
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2
j

Cv
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. (79)
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2
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!
(80)

Here we added 0 = f (x⇤)� f (x⇤) in the second line and used the mean value theorem. From our
assumptions we conclude that 0  f

0 (x⇤⇤) , f (x⇤) L and x
⇤ � x  M as well as v

2
j
 M

2. Thus
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which differs from the bound of the bias for the common histogram estimator in equation (9) by
the term L

�
M

2/Cv�1
�
. Therefore, the bound of the adapted estimator bias it is lower than the one

of the common histogram if M <
p

Cv =
q

Âm

j=1
n j

n
v j. This quantity is the root of the sum of all

bin volumes weighted by the fraction of the data points contained inside. For bins of equal size
M = v j, this condition reduces to

M < M

s
Âm

j=1
n j

n

M
, 1 <

1p
M
. (82)

Likewise to the ordinary histogram estimator, smaller bins result in a more negligible overall bias.
Additionally, for equal-size bins, when condition (82) holds, the bias is smaller than the one of the
ordinary histogram estimator.
For higher dimensions the equation (81) generalizes to
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4.3 Variance

We again let M be the biggest bin width and | f (x)| L. Hence with C̃ =
p
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The n j are a binomial random variable B(n, p;x) with mean np and variance np(1� p). Therefore
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In the last step we used p j(1� p j) 1/4.
Therefore, we can conclude that the variance decreases with the size of the dataset, with a larger
value range, spanned by the sample, and decreasing bin size. This variance behavior is a differ-
ence to the variance of the common histogram estimator for probability in equation (10), which
increases for smaller bins.
For D > 1, this generalizes to
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. (91)

4.4 Behavior for Equal-Width Bins

For equi-width bins the estimator f̂n(x) converges to the common discrete probability f̂n(x) !
P(x 2 B j) = n j/N.
When the volume of bin B j is constant v j = ’D

k=1 vk = v
D. Thus the normalization constant can be

calculated as
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This gives
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The contribution of the bin width correction to the assigned probability vanishes in the normaliza-
tion for equal-width bins. Then the adapted estimator reproduces the standard frequentist proba-
bility estimator for bins of equal size.

32



4 INCORPORATION OF BIN SIZE INTO DISCRETIZED PROBABILITY ESTIMATION

4.5 Behavior for Equal-Frequency Bins

For equal-frequency bins we have a constant number of data points in every bin: n j/n = n0/n. Thus
the normalization becomes
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Therefore we have

f̂n(x) =
1
C

m

Â
j=1

n j

n

D

r
v j

v
x2B j

(101)

=
1

n0
n

Âm

k=1
D

q
vk

V

n0

n

D

r
v j

V
(102)

=
1

1+Âm

k 6= j
D

q
vk

v j

. (103)

Now let vq be the bin with the largest volume. Then

f̂n(x)�
1

1+(m�1) D

q
vq

v j

. (104)

If now vq = v j we obtain f̂n(x) � 1/m. If we consider vq to be the smallest bin, the orientation of
the inequality switches and f̂n(x)  1/m. Thus the hard criteria of equal probability for each bin
with the frequentist notion of discrete probability transforms to a bound with this estimator. It
allows for different probability based on bin sizes.
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Figure 5.1: Schema of the coupled map lattice setup.

5 Transfer Entropy Estimation

In this section, we will evaluate the performance and caveats of the transfer entropy estimator.
Therefore we will use synthetic systems which are similar to the ones utilized by Schreiber in his
paper that first presented the measure [60]. We will extend this analysis and apply additional non-
linear maps within the framework. Additionally, we will extend the parameter ranges Schreiber
studied and evaluate the effects of small sample sizes, noise, range, type of discretization, and
the effect of remapping the distribution onto another. We will evaluate the effects of these factors
on the different normalizations of the transfer entropy. This chapter aims to provide merit to
developing a robust transfer entropy estimator that yields comparable results when applied to
different time series pairs and is therefore primarily independent of the just mentioned factors.

We applied the complete analysis to all maps. However, to spare the reader repetition, we will
only discuss the findings of one instructive example map for every effect. First, we will start with
the tent map to stay consistent with Schreiber. Subsequently, we will also refer to CML systems
based on the other maps.

5.1 Model Systems

To study the abovementioned characteristics we will utilise coupled map lattices (CMLs). These
systems are constructed such that the l values in row n+1 depend on row n. To start with, the indi-
vidual maps are seeded uniformly on the [0,1] interval and subsequently for the next row and map
l we have x

l

n+1 = f (ex
l�1
n

+(1� e)xl

n
) with with a non-linear function f and periodic boundary

conditions. For statistics, we will generate 100 time series and run the iteration for a 105 transient
steps. Then we start to record the timeseries. A schema of this lattice structure is displayed in
figure (5.1).
Whereas Schreiber only used the tent map, we will additionally study the logistic, Bellows, and
exponential map. The last two exhibit a long tail distribution. This is evident from figure (5.2).
To study the behavior of the measures, we will vary the coupling strength e of the coupled map lat-
tice. Therefore, we will proceed to introduce the maps used for the CML systems. First, however,
we will discuss the non-linear functions.

34



5 TRANSFER ENTROPY ESTIMATION

(a) Tent map Cobweb diagram. (b) Tent map bifurcation diagram

(c) Logistic map Cobweb diagram. (d) Logistic map bifurcation diagram

(e) Bellows map Cobweb diagram. (f) Bellows map bifurcation diagram

(g) Exponential map Cobweb diagram. (h) Exponential map bifurcation diagram

Figure 5.2: The figures show Cobweb and bifurcation diagrams of the tent, logistic, Bellows, and
exponential map. The latter two exhibit power-law distribution characteristics.
The gradient indicates increasing point density in bifurcation diagrams from bright to dark colors.
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5 TRANSFER ENTROPY ESTIMATION

Tent Map Lattice Schreiber [60] evaluates TE (among others) with a coupled tent map lattice.
Specifically, he studies a low e regime, e 2 [0,0.05] and uses a binary partition {[0,0.5) , [0.5,1]}.
We reproduce and extend this analysis to the whole e 2 [0,1] range.
The tent map is defined as

Tent Map : [0,1]! [0,1]

f (x) =

(
rx if x < 1/2

r(1� x) else
. (105)

The Cobweb and the bifurcation diagram for the parameter r of the tent map are displayed in
the figures (5.2a) and (5.2b) respectively. Schreiber used r = 2 in his analysis which proved
numerically unstable in our implementation. It converged to a fixed point. Therefore, in this
analysis, we used r = 1.99999.

For this choice of r the tent map has two unstable fixed points at x
⇤
1 = 0 and x

⇤
2 = r/1+r ⇡ 2/3.

However, in the CML setup, the fixed points depend on the neighboring values. Thus they are
different from the singular case.
Figure (5.4a) shows the empirical density, autocorrelation and power spectral density (PSD) of the
tent map CML. The PDF plot instructively shows the repellent nature of the x

⇤ = 0. Additionally,
we observe diminishing autocorrelation and more weight in the higher frequencies of the PSD,
though frequency amplitudes are smaller than for other maps.

Logistic Map Lattice The logistic map is defined as

f (x) = rx(1� x) (106)

and was devised to model population dynamics. For this analysis we used r = 4 which is a non-
linear transformation of the rtent = 2 case of the tent map. The map has two unstable fixed points
at x

⇤
1 = 0 and x

⇤
2 = (r�1)/r = 3/4. The bifucation diagram (5.2d) and empirical PDF (5.4b) at e = 0.5

show the highest density of data points towards the higher edge of the possible data range. This
fact is also visible in figure (5.2d).
Interestingly, the common parameter choice r = 3.9 exhibits intermittent behavior and subse-
quently runs into a periodic orbit when applied to coupled lattice systems with e = .5. Figure
(5.3) displays this effect. In the plot, we observe intermittency in the time series, which eventually
reaches a steady state. These fixed points for certain e result in the vanishing TE observed in figure
(5.5b).7

The logistic map still shows a dynamic of the autocorrelation function, the autocorrelation for the
longest temporal distance from 0 of all maps studied in this section. Therefore, it also exhibits the
sharpest peak in the power spectral density (see figure 5.4b).

Bellows Map Lattice The Bellows map [57] is defined as

f (x) =
rx

1� xb
. (107)

We chose b= 6 and r = 5 for the e-coupled lattice. The Bellows map is not a common system used
in complex systems research. We nonetheless incorporate it into our analysis since it exhibits a
fat-tailed distribution with no finite maximum value. This is also evident from the cobweb diagram
(5.2e) and the empirical distribution of the CML at e = 0.5 in figure (5.4c). Fat-tailed distributions
are of interest since asset return distributions often exhibit similar features.
With our parameters, the Bellows map has one unstable fixed point at x

⇤
1 = 0.8

7The study of the dynamics of the coupled lattice is certainly interesting. Nonetheless, it is beyond our application
for transfer entropy and thus out of the scope of this thesis. We, therefore, neglect further discussion at this point.

8Would we evaluate the Bellows map on the complex plane, there is another unstable fixpoint at x
⇤
2 =

b
p

1� r = i
6
p

5.

36
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Figure 5.3: This figure shows the intermittency and convergence to a fixed point of the exponen-
tial map lattice at e = 0.857143. Note the different scales of the two y-axes.

Exponential Map Lattice The exponential map is defined as

f (x) = x · exp(r(1� x)) . (108)

In our analysis we used r = 4. There are other forms of the exponential map. However, all forms
are identical with a change of variables. As the Bellows map, the exponential map is unbounded
with a long tail. With our parameter choice, the map has two unstable fixed points at x

⇤
1 = 0 and

x
⇤
2 = 1. Figure (5.4d) shows the empirical PDF for e = 0.5 with the highest density closer to zero.

It has the highest peak within the PSD of all example maps we study in this thesis. It exhibits no
autocorrelation.

5.2 Transfer Entropy by e in CML Systems

We now study the information flow by evaluating the transfer entropy values between the rows
of the CMLs. TE is calculated to quantify the information flow between every column and its
left neighbour, TE = T E

x
l�1
n !xl

n

(again with periodic boundary conditions). The transient period
ensures an identical empirical distribution of the processes. As a result, the information flows
between the CML columns are identically distributed. We see the vanishing errors of probability
density, power spectrum, and autocorrelation in figure (5.4) that provide evidence for this result.
We can, therefore, aggregate the measurement results of each CML column to provide statistics.
Even though the autocorrelation function might suggest a lag > 1 for the exponential map, the
self-correlation decline is so steep that we take K = L = 1. Thus we keep consistency among our
analysis and with Schreiber.
Now, figure (5.5) displays the variation of Schreiber’s TE measure in the CML systems with
the coupling strength e . Generally, we see the expected increase in TE with increasing e .
However, there are exceptions to this trend. These exceptions appear when the CML system
reaches a fixed point, periodic orbit or exhibits intermittency for the given parameter configuration.

Additionally, the figure (5.5) is an example of the dependence of the measured TE value on
the partition of the data. We obtain the lowest (blue) line in the plots (5.5) by using a binary
partition. Each higher line used one more class for discretization up until 30 bins for the highest
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(a) Tent map. (b) Logistic map.

(c) Bellows map. (d) Exponential map.

Figure 5.4: The figure shows the empirical density (PDF), autocorrelation (r(t)), and power
spectral density (PSD) of the four studied processes at e = 0.5. Errors are taken over the CML
columns but are mostly so small that they are not visible.
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(a) Tent map. (b) Logistic map.

(c) Bellows map. (d) Exponential map.

Figure 5.5: The figure displays the CML systems’ transfer entropy (TE) by e 2 [0,1] of the
four maps studied. The different lines correspond to the TE by e variation with a different level of
detail. The lowest blue line was obtained via a binary partition, and the upmost line was discretized
into 30 classes. Generally, a finer partition allows for more information flow to be measured. This
effect results in the stronger expression of features the variation of information flow with e for
finer partitions.

line. Since we calculated the measures with 105 � 30 data points, the obtained TE values do not
suffer from small sample effects.
We can observe two effects depending on the level of detail of the partition. First, a rough
resolution is not able to resolve all the underlying dynamics. Examples of this are the exponential
or Bellows map (figures 5.5c and 5.5d) which at some point show a decline of TE with increasing
e . The increased influencing relation between two adjacent CML columns stays hidden behind
the partitioning of values.
The second effect is the increase of TE with the level of detail of the partition. These increases
are intuitive in the sense that (in the absence of finite sample effects) a finer partition uncovers
more information about the underlying process. The maximum possible entropy of a variable
is logm when m is the number of different possible values. Resultingly, more information
contained within a partitioned time series also allows for more information to flow between two
time series. Again, this finding underlines the need for a proper normalization to uncover the
relationship of the time series generating processes and not evaluate any skew in our result caused
by length-of-sample effects.
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5.3 Normalization Dependence

We have discussed two normalizations in chapter (3.3) that we want to evaluate in this section.
The first normalisation is the division of the TE value by the entropy of the influenced variable
conditioned on its own past, 1� TE/H(Yt |Yt�L). This normalization is intuitive as H(Y |YYt |Yt�L

) is the
maximum of the TE and achieved if H(Yt |Yt�L:t�1,Xt�K:t�1) = 0 and the past of X fully explains
Y . Therefore, the TE equals 0 when there is no change to the (joint and conditional) entropies of
Y and its past whether or not we consider the past of X .
The maximum entropy of a variable with m different values, HMax = logm, yields the second
normalization candidate logm NTE = TE/logm. This measure is more difficult to interpret than the
previous normalization. This circumstance becomes apparent since the measure’s value is higher
when one of two conditions is met (and the other constant): first, a higher flow of information,
or, second, more information content within the influenced variable. Vice versa, we attain a low
value if there is low information flow.
In chapter (4) we also introduced a normalization which relies on the interpretation of MI as
an information theoretic analogue to the product moment correlation. NTE = TEX!Y/

p
H(X)H(Y ).

We can omit separate study of said normalization since in our CML systems X and Y are
identical processes and thus H(X) = H(Y ). For H(Yt) = H(Yt |Yt�L1) this is identical to the first
normalization we are studying. If H(Yt) > H(Yt |Yt�L) then the resulting NTE does not cover the
[0,1] range as NTE 2 [0,u] with 0  u < 1.

Therefore, we will only compare the H and logm NTE normalizations. Figure (5.6) shows
plots of these normalizations for the Bellows map. The plot shows the e dependence of the Bel-
lows map CML of 100 time series of 105 values. As intended, the normalizations shrink the TE
values (see figure 5.5c). Therefore, it becomes apparent that the normalization squeezes the value
differences of the NTE values obtained with a higher bin count more than in the rough partition
regime. Two circumstances cause this effect. First, a more granular partition allows higher infor-
mation storage, and second, the normalization is non-linear.
However, we see that the H NTE normalization skews the TE variation with e to the point where
we attain local maxima instead of local minima at e ⇡ 0.2 and e ⇡ 0.8. These maxima appear since
the entropy conditioned on its past (with lag K = L = 1) responds more than the joint entropy to
the e specific CML dynamics (fixed points, periodic orbit, or intermittency). For these cases, H is
lower than for the surrounding e-values. The corresponding NTE values are therefore higher than
in the e neighborhood.
The logm normalisations shape stays closer to the unbounded TE variation (see figure 5.5c). Ad-
ditionally, the logm normalization is a sample independent constant for a fixed resolution and thus
does not add to the error of the resulting NTE value. This effect is evident in figure (5.7), where
the logm NTE mostly shows the smallest variance. This effect is more pronounced in the small
sample regimen than for sufficient data points.
Another drawback of the entropy normalization is its small sample behavior. For example, in fig-
ure (5.8), we can observe a washout of fine structure in the e dependence of the H NTE measure
on e for the finer partitions, especially for intermediate values.

5.4 Sample Size Dependence

TE estimation relies on density estimation of the underlying processes. For some terms, this
density estimation is trivariate as it depends on the distribution of Yt ,Yt�L,Xt�K . Therefore, the
number of classes for the probability estimation is cubic regarding the partition of X and Y . That
is why we need sufficient sample sizes to obtain a robust estimate of the probability densities and
TE. The lower bound of the sample size is of particular interest for our application since we want
to study the temporal evolution of TE employing sliding windows (see section 2.5.4). Naturally,
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(a) H NTE, e 2 [0,1]. (b) logm NTE, e 2 [0,1].

Figure 5.6: The plots show normalized TE values of the e coupled Bellows map lattice for two
different normalizations. We averaged values over 100 column realizations of 105 values with
diminishing errors almost covered by the linewidth. The lines correspond to 2 to 30 bins for NTE
calculation. The H normalization introduces a greater deviation from the unbounded TE variation
with e 5.5c) than the logm normalization.

we would prefer a finer resolution of this temporal evolution. However, for a finite dataset, this
means smaller sample sizes for each TE calculation time step.

Figure (5.7) shows the decrease of the error of the (N)TE values by sample size for a partition
of four equal-sized bins at e = 0.5 of the four CML systems.9 We see that for increasing sample
size, all errors converge to zero. For the most part, the error of the logm NTE is the smallest
in absolute terms. It is trivial that the error of the logm normalized measure is smaller than
the unnormalized TE since its value is divided by a constant for normalization. For the H

normalization, the denominator contributes to the error of the measure. Therefore, the TE and H

NTE error difference shows a more complex dynamic and is different for the different detail levels
of the partition. In the four bin case, the difference of the H NTE and TE errors changes sign at
certain points for the tent and Bellows map. For the most part, however, the H NTE exhibits the
largest errors. The error magnitude is notable since the TE is larger than the normalized measures
and thus has a smaller relative error. The finer partition shows a different dynamic. Here, for low
sample sizes, H NTE shows a significantly larger error, which decreases to be soon lower than the
TE error. Nonetheless, it is never significantly smaller than the other normalization. Generally
for the logm NTE and sample sizes above 100 data points s < .05. Since the NTE values are
bounded, this corresponds to an error of less than 5%.
Since we now established how the error of the measures scales with sample size, we will now
proceed to discuss the error dynamics in our CML systems for a small sample by varying e . In
the previous section (5.3 we established that the H normalization skews the TE variation with e
more than the logm normalization and generally yields higher NTE values. We observe that the
magnitude of these effects increases with decreasing sample size. In figure (5.8), we see that for
the same number of bins, the H NTE value is higher at the same e when calculated for the small
sample than for the large sample case displayed in figure (5.5c).
Additionally, the initial increase with e at small e values is steeper. On top of this, we can observe
a washout of the H NTE variation features with e , especially for finer partitions. These effects are
also present within the other model systems. None of these small sample drawbacks is present for
the logm NTE normalization.

9The reader can observe the e dependence of the CML dynamics for the partition into four bins at the lowest green
lines in figure (5.5).
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(a) Tent Map, 4 Bins. (b) Logistic Map, 4 Bins.

(c) Bellows Map, 4 Bins. (d) Exponential Map, 4 Bins.

(e) Tent Map, 30 Bins. (f) Logistic Map, 30 Bins.

(g) Bellows Map, 30 Bins. (h) Exponential Map, 30 Bins.

Figure 5.7: The figure displays s by sample size for the four maps with 4 (5.7a, 5.7b, 5.7c, 5.7d)
and 30 (5.7e, 5.7f, 5.7g, 5.7h) bins. More bins show a steeper decrease of errors with increasing
sample size.
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(a) H NTE, e 2 [0,1]. (b) logm NTE, e 2 [0,1].

Figure 5.8: The figure shows the small sample (300 data points) variant of the Bellows map setup
in figure (5.6). We see that the H NTE measure washes out certain features of the information
flow variation with e . The same features are preserved with the logm NTE normalization.

Consistent with the prior discussion above, we see an increase in error due to the small sample
size. We can also observe the non-vanishing NTE for both normalizations for the uncoupled CML
(e = 0). This effect, however, is more pronounced for the H NTE normalization. Regarding
sample size, we can conclude that the logm normalization for an NTE measure is far more robust
regarding small sample sizes than the H normalization.

5.5 Partition Detail Dependence

As evident from the figure (5.5), the TE value depends on the level of detail of the partition.
However, the level of detail that is possible to resolve depends on the sample size. This section
will discuss how the detail and type of partition influence the final (N)TE value. We will first
discuss the combined effects of resolution and sample size, for which we utilize uniform-sized
binning spanning the whole value range. In the subsequent section, we investigate the influence
of differing binning methods that either fix the number of bins or allow for unequal bin sizes. The
third type of binning method, which merely yields the appropriate number of bins, is implicitly
covered with this first discussion for which we scan the number of bins.

Now that we have established the dependence of the (N)TE estimation on the sample size
and normalization in the previous chapter, we will cover the influence of the partition itself. We
have already discovered that the TE value depends on the level of detail of the partition (see 5.5).
Additionally, the level of detail that is resolvable to a satisfactory level depends on the sample
size. If one chooses a too fine partition for the number of data points, the resulting density will
not reflect the proper PDF. Therefore, we will now discuss the interaction of these two effects and
look at the interplay of partition detail and sample size.

The figures (5.9) show a surface plot of the (N)TE value dependent on the sample size and
partition detail (of equal-sized bins) as well as the bivariate view of the relations at the surface
edges. We can observe a significant difference in the surface shape between the H NTE and logm

NTE variation. Whereas the latter exhibits a local maximum and subsequent decrease of the
measure with increasing level of detail of the partition, the H NTE normalization at first increases
steeply with the number of bins with a subsequent significant slope decline. Arguably, however,
the most striking difference is the lack of variation of the H NTE variation with the sample size.
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At first glance, this might seem desirable. After all, the purpose of normalization is to normalize
for the variation of some parameters such as sample size. However, the H NTE of the logistic
map converges to an upper bound value close to one. This decrease is because of the decrease
in entropy with a finer partition and more evenly distributed probabilities of each class of the
discretized PMF as they only contain fewer data points (or are empty and do not contribute the
entropy). Said effect is more prominent for the numerator in equation (65) since the number of
classes scales cubic with the partition detail for the trivariate joint and conditional entropy but
only squares for the joint and conditional entropy in the denominator.
Additionally, the H NTE normalization yields higher values than the unbounded TE in the small
detail regime. This odd effect of the normalized value being greater than the unbounded value is
induced by the inability of the rough binning to resolve the dynamics of the process resulting in
low entropy in the denominator and subsequently higher H NTE values.

Contrary to this, the logm normalization variation by sample size and partition detail recovers
a rescaled shape of the unbounded TE. As such, the normalization fails to make the measure in-
dependent of either of these variables. Nonetheless, it introduces an upper bound to the measure.
The TE and logm NTE variations exhibit a local maximum by partition detail. This extreme value
occurs because of the interplay of two counteracting effects. First, an increase in partition de-
tail uncovers more information within the constituent time series, increasing possible information
flow.
On the other hand, finite sample effects and desaturation of bins result in a decrease in the fi-
nal value. Since this desaturation occurs at a finer partition level for larger samples, we observe
an increase in the measured value with the sample size. Naturally, this effect is far more pro-
nounced at finer partitions. Moreover, since the probability of a data point falling into a particular
bin decreases with an increasing number of equal-sized bins, the slope of this increase of (logm

N)TE with the sample size decreases. We will exploit these characteristics to introduce a binning
criterion in section (5.8).

5.6 Discretization Method Dependence

In the last section, we have established the variation of (N)TE with the level of detail of the
partition. To accomplish this, we utilized a binning with uniform width buckets. However, bins of
unequal size are easily implemented and might better reflect the underlying structure of the data
without increasing the level of detail. The ability to resolve more detail of the underlying process
without increasing the resolution would prove useful if we consider the finite sample effects that
demand a certain roughness of the partition. Additionally, several methods yield criteria for a
"correct" number of bins. We established all these methods in detail in the section (2.3). They
are additionally presented in the table (5.1). Of these methods, the EMGMM bins, a clustering-
based method, were excluded from thorough analysis because of severe numerical instabilities
and underperformance of the method compared to others in instances where the algorithm did
converge.

Scoring the performance of the binning methods is problematic because it is not trivial to
devise a scoring criterion. The underlying processes of our CML systems are continuous values,
yet (N)TE needs discretization. We cannot use the proximity of the estimated PDF to the true
PDF for two reasons: first, the PDF of a time series in a CML system (or general) system
might be unknown. Second, we cannot use the normalization by bin width necessary for PDF
convergence because the integral over all values does not converge to one. Instead, we have to
use a PMF, which is only normalized by the number of data points. This PMF, however, does
not represent or converge to the actual density of the variable since it is continuous and not discrete.
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(a) TE. (b) logm NTE.

(c) H NTE. (d) Variation of (N)TE with bins and sample fixed
respectively.

Figure 5.9: The variation of the three (N)TE values with the sample size and partition detail for
the logistic map. Figure (5.9d) shows the side view of the surfaces. We see that the logm NTE
measure recovers the shape of the unnormalized quantity. While the absence of variation with the
sample length of the H NTE measure seems desirable, it occurs at a value close to one that the
quantity loses meaning. This large information flow is not a feature of the process but just induced
by the normalization.
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Nr. Binning Method Outputs Inputs
1 Uniform Width h Sample Range, m

2
p

n m Sample Size
3 Sturges m Sample Size
4 Rice m Sample Size
5 Doane m Sample Size and Moments
6 Scott h Sample Size and Moments
7 Freedman-Diaconis h Sample Size, Interquartile Range
8 Knuth m Sample Size, m

9 k-Means h j Sample, m

10 DBSCAN h j Sample
11 Mean Shift m,h j Sample
12 Uniform Probability h j Sample, m

13 Agglomerative Hierarchical h j Sample, m

14 Minimum Cross Validation h Sample, Sample Size and Range
15 Maximum Cross Likelihood h Sample, Sample Size and Range
16 Shimazaki-Shinomoto h Sample, Sample Size, Range, and Moments
17 Akaike m,h Sample Size and Range, m

18 Small Sample Akaike m,h Sample Size and Range, m

19 Bayesian Information Criterion m Sample Size and Range
20 Agostino Uniform Probability m,h j Sample
21 EMGMM (Excluded) h j Sample, m

Table 5.1: Overview of inputs and outputs of the binning methods. The numbering in this table
serves as a reference for the subsequent plots. h refers to the bin width. If unequal bin sizes are
possible this is indicated with the subscript j. m refers to the number of bins

46



5 TRANSFER ENTROPY ESTIMATION

Since we cannot score against some true value, we score the estimator consistency in the
subsequent analysis. Namely, we compare the variance of (N)TE values over different realizations
of the same process. The result is visible in the figures (5.10) and (5.11). For now, we are only
interested in the left (blue) part of each violin plot. The orange part represents the result for the
adapted probability estimator within the (N)TE calculation. We will discuss its performance in a
subsequent section.

The violin plots show the empirical probability density for the values on the vertical axis of
the sample of (N)TEs for 100 realizations of the same process. The displayed PDF is inferred with
kernel density estimation. Unfortunately, this approach sometimes results in nonzero probability
for subzero (N)TE values despite the (N)TE being � 0, a common drawback of the KDE method.
Within the violin plots, the white dot and black bar represent the mean and interquartile range of
the sample. The numerical identifiers correspond to the binning methods as per table (5.1).

The for our purposes most important effect we can observe in figure (5.10) is that the different
binning methods yield vastly different (N)TE results. They have different means and spread.
The methods 2 to 8 exhibit the tightest distribution about the (N)TE spectrum. They perform
comparably well because they yield a consistent number of bins based on the sample size, which
is kept constant in figure (5.10). However, when we compare figure (5.10a) with (5.10c) or (5.10b)
with (5.10d) we see that the value of these methods shifts as well. This shift is also apparent when
we look at the spread of the uniform width bins (method number 1). As opposed to methods 2
to 8, which yield a certain number of uniform width bins based on sample characteristics, for
method 1, the number of bins were varied, which shows a significant spread about the (N)TE
value range. As such, uniform width bins yield a (N)TE measure that is a function of sample size,
even when the number of bins is set with a criterion.

Let us now discuss the clustering-based methods 9 to 11, and 13. We can see that these
methods fail to provide a consistent estimation as they exhibit a big spread of (N)TE values
over the value range. Additionally, the PDF of the measure’s value is not sharply peaked. The
underperformance of these methods might be due to the nature of the data. As visible in figure
(5.4), the data does not exhibit distinct clustered but merely value ranges of higher and lower
density. Hence, clustering-method-based bins might still prove helpful in other applications where
the data itself is more clustered. In our applications, however, this is not the case.

Next, we will discuss the uniform probability binning methods 12 and 20. The difference
between the methods is that the Agostinos bins (number 20) provide a criterion for the number
of bins, whereas these were varied for method number 12. Naturally, the latter shows a larger
variance about the possible value range. However, the same reasons as above apply. Agostino’s
bins are a function of sample size. This is evident when we compare figure (5.10a) with (5.10c)
or (5.10b) with (5.10d) between which the (N)TE value of Agostinos bins shift.

Lastly, we want to discuss the binning methods that calculate the number of bins with a
criterion. These are the methods 14 to 19. Already in figure (5.10), it is apparent that these
methods show a spread over the possible value range. When we study figure (5.11), we can infer
how this spread comes about. The (N)TE value increases with the number of bins. Additionally,
the spread of the (N)TE values increases with the number of bins.

We can therefore conclude that we could not identify a binning method that consistently out-
performs the other ones. The methods that fix the number of bins show the lowest variance and
spread, but the resulting (N)TE value remains a function of sample characteristics - for example,
the sample size - that do not correspond to attributes of the underlying sample generating pro-
cesses. As of now, it is apparent that the methods that allow for unequal bin sizes show the most
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(a) TE, n = 300. (b) NTE, n = 300.

(c) TE, n = 1500 (d) NTE, n = 1500

Figure 5.10: This figure shows violin plots of the TE and logm NTE values for the ordinary and
adapted discrete probability estimator by different binning methods for two different sample sizes
of the exponential map. The binning methods are labeled according to the table (5.1). Vertically,
we see the empirical PDF of the (N)TE values. (N)TE is non-negative. The non-zero densities
for (N)TE< 0 with some binning methods are an artifact of the kernel density estimator used for
plotting.
We can see that the final (N)TE value severely depends on the shape, count, and method to generate
bins. This dependence is true for both the standard and adapted probability estimators.
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extensive spread. This spread might be because we neglect available information encoded in the
bin sizes. Therefore, in the next section, we will evaluate (N)TE calculation with the adapted
estimator that incorporates bin size into PMF (and notably not PDF) estimation.

5.7 Evaluation of Discretization with Incorporated Partition Width

So far, we have only evaluated partitions of equal width. In section (4), we proposed a novel
discretizing probability estimator that incorporates not only the number of data points but addi-
tionally the bin size. The results of the (N)TE calculations with the adapted PMF estimation are
displayed in the orange densities in the plots (5.10) and (5.11). These figures show an empirical
verification that the estimator recovers the common PMF-based (N)TE values for uniform width
bins. Therefore we will limit the subsequent study onto binning methods that allow for unequal
bin sizes. These are the methods with h j as an output in table (5.1).

Nonetheless, we again have to pose the question of how we should evaluate performance.
In an earlier study included in the appendix (appendix section 8.3), we scored the estimators’
performance on samples drawn from know distributions against the true PDF values. However,
data from this approach was not the result of dynamic system interaction, and as such, we were
only able to test only PDF estimation and not (N)TE in this framework. Therefore, this section
will stay consistent with the above analysis and score our CML systems’ performance. This
approach, again, is difficult as we do not know the true underlying PDF of the process. We will
therefore evaluate consistency. We will conduct this evaluation by utilizing probing points at
certain x values. Then we evaluate the variance of the inferred probability mass at that point.
The result is displayed in figure (5.12). The first two rows show the probing for the common
and adapted probability estimator, respectively. The third row shows their difference. The first
and second columns show the edge cases for the number of bins at 2 and 100 bins, whereas the
last column shows the values over all binning methods. Each subplot in figure (5.12) shows the
probing results for all of our CML systems. The different systems are plotted adjacently but
separated by vertical blue lines. We utilized 100 probing points that were evenly spaced over the
data range.

We can see that for a higher number of bins, most of the methods yield consistent results.
The exceptions are the DBSCAN and mean shift methods. Nonetheless, when taken overall bins,
all methods with both PMF estimators show nonzero variance. This variance is highest for the
DBSCAN method. We can also see that performance varies by the particular CML analyzed.

To evaluate the performance of the adapted PMF estimator against the common one,
the last row in figure (5.12) is most instructive. Here we see the differences of variances,
s(Adapted) � s(Common), between the estimation methods at the probing points. Since
variances are � 0 a value > 0 indicated better performance of the common estimator, a value < 0
the opposite and vanishing difference signifies equal performance.

The results of this probing evaluation are at odds with the prior results that compared the
estimated PMF to the actual probability density. We see both under and overperformance of
the adapted estimator when compared to the standard probability density estimation. All in all,
the differences seem reasonably moderate. An exception to this is the exponential map CML
with the uniform probability estimator. Here we see a substantial underperformance of the
adapted estimator on almost the whole value range of the exponential map. When we evaluate the
performance overall bin numbers, we see that the overperformance of the adapted estimator, if it
occurs, tends to be at the edge of the value ranges of the respective maps.
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Figure 5.11: The figure shows the same setup as in figure (5.10) for n = 300. It differs in the
aspect that we controlled the number of bins (if applicable for the method, i.e., m is a method
input). Other samples were taken over different numbers of bins in the range of 2 to 100 in each
plot. We see a slight convergence for larger bin counts.
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Figure 5.12: This figure shows the variance of the n = 1000-CML process empirical PDF of
all maps at 100 probing points. These points are uniformly distributed over the respective CML
processes value range for all binnings (right) and the extreme 2 (left) and 100 (middle) bins case.
All binning methods which do not have h j as output are omitted. The first row shows the variance
of the common and the second of the adapted probability estimator, and the last shows the variance
differences. We find that both methods perform better in specific arrangements. However, the
standard estimator outperforms the adapted more often than not.
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(a) n = 300

(b) n = 1500.

Figure 5.13: The heatmaps show the values of D(N)TE = s((N)TEAdapted)�s((N)TECommon)
for the binning methods that allow for different bin sizes and thus exhibit differences with the
estimator. Methods are enumerated as per table (5.1). We evaluate this difference for two sample
sizes, n = 300 and n = 1500. Red values display the outperformance of the adapted estimator by
the common one. The values are close to zero. Stronger deviations indicate a performance plus of
the common estimator.
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We are, of course, not only interested in the variance of the estimators concerning PMF
estimation but also in the resulting (N)TE values. These are visible in the heatmaps in figure
(5.13). Here again, we evaluate the standard deviation of the measure over multiple realizations
of the CML system. Instead of evaluating probing points, we calculate the (N)TE measure
directly. As with the probing approach for the probability estimation, we find both under- and
overperformance of the adapted estimator compared to the common one. Most differences are
fairly close to zero, though there are some outliers. When evaluating the different sample sizes,
we see that the differences are, for the most part, more pronounced for smaller samples.

We conclude that these findings do not warrant any recommendation to utilize an adapted
estimator that incorporates the bin size into PMF estimation. The approach of this thesis to include
information in the bin width for PMF estimation did not prove fruitful. There are instances where
this approach yields a smaller variance of results in both PMF estimation and subsequent (N)TE
calculation. Nonetheless, we could not identify any systematic logic about when they occur.
Additionally, performance differences are generally minor in magnitude. Hence, it is advisable
to use the ordinary PMF estimator, which has fewer hyperparameters as only the bin count and
not the bin size contributes to the PMF estimation. Other approaches to extract and utilize this
information might exist. Nonetheless, for the remainder of this thesis, we will utilize the standard
PMF estimator.

5.8 Maximum Information Transfer Criterion for Partition Resolution

The above analysis showed no superior binning method. Nonetheless, we know that different
binnings yield a different (N)TE value. Nevertheless, we have no criterion to choose a "true"
(N)TE value since we need discretized values of an underlying continuous variable. A remaining
goal, however, is to make at least the estimation consistent. Therefore we will use the two
counteracting effects we first described in section (5.5) that govern the resulting (N)TE value. On
the one hand, these effects are the (N)TE increase due to a more detailed partition and the ability
to resolve more information for finer resolution, and on the other hand, the decrease of (N)TE
due to the finite sample effects. These effects yield filling levels for bins that do not match the
underlying density if too many bins are utilized for a given sample size.

We can take advantage of these effects by scanning the number of bins. Resultingly we
find a binning for which the (N)TE exhibits a local maximum since the information increase is
steepest in the low-resolution regimen, whereas small sample effects dominate for finer partitions.
This relation becomes apparent for the TE and logm NTE measures in figure (5.14). The small
sample desaturation of the data with increasing resolution causes the H NTE to converge to 1
as the measure’s constituent joint and conditional entropies reach their maximum. Therefore, at
least for the TE and logm NTE measure, we can apply a maximum transfer entropy criterion
and utilize the binnings for the variables X and Y for TEX!Y and logm NTEX!Y that maximize
the quantities. In doing so, we incorporate both the increase caused by increased resolution and
the decrease caused by desaturation by finite sample effects. At the maximum, these effects
have a similar magnitude. We can infer the same effect when comparing the evolution of the
logm NTE value with the number of bins. The fit (red line) is calculated on the logm NTE
evolution from 2 bins to its maximum with the formula for a (N)TE increase solely driven by the
increase in resolution, µ a+b logx. We can see that the finite sample effects, therefore, drive the
decrease of the measure. Additionally, the empirical NTE value increase is steeper than the solely
resolution-driven increase, which suggests the contribution of the actual underlying information
flow that is detected.
This method still depends on the sample size as larger samples allow for a finer resolution
and subsequently more detected information flow and desaturation at a higher number of bins.
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Figure 5.14: This figure shows that TE declines with increasing bin counts due to finite sample
effects. This effect is preserved with the logm normalization but not for H NTE. The fit is the only
binning driven TE increase by increasing resolution fitted to the logm NTE until its maximum.
This visualizes the logm NTE decrease induced by finite sample effects.

However, this fact is valid for the transfer entropy measure in general.

Ideally, we would prefer a measure that does not incorporate sample effects without correspon-
dence to the underlying process. However, we assume that these finite sample effects are similar in
shape and magnitude for all samples, and thus, we incorporate a consistent bias into our model and
keep the desired comparability of the quantities. Still, larger samples can yield higher TE as we
then resolve more information. We can mitigate this effect by utilizing the logm NTE. Therefore,
we have established the superiority of the logm normalization for the transfer entropy, at least for
our purposes. The measure allows for a maximum point criterion that enables consistency and,
therefore, comparability of the measure between different samples or processes. Additionally. as
discussed above, the variation of the logm normalized measure stays closer to the variation of the
free TE. It also has the lowest absolute errors for a given sample size. Therefore in the subsequent
section, we will drop the discussion of the H NTE normalized quantity. If we refer to NTE in the
subsequent sections, we refer to the logm NTE measure.

5.9 Influence of Gaussian Remapping

In the preceding sections, we have encountered the problem that we generally do not know the
analytical PDF of the constituent processes for the (N)TE calculation. This knowledge gap be
circumvented by applying a remapping of the sample onto a known (in our case a Gaussian)
distribution as described in section (2.5.1).
We will now evaluate the remapping effect on the information flow. The result for the exponential
map is displayed in figure (5.15). The remapping severely changes the variation of the exponential
CML with the coupling strength e . For a constant partition detail, the information flow increases
when the remapping is applied. The non-linear normalisation then yields the more pronounced
squeeze of the normalised measure when comparing (5.15c) to (5.15d) than for (5.15a) to (5.15b).
Additionally, the errors are larger for the remapped data (N)TE measure.
A skewing of the calculated (N)TE is undesirable. Therefore, the trade-off to know the shape of
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(a) TE. (b) NTE.

(c) TE of remapped data. (d) NTE of remapped data..

Figure 5.15: This figure shows the effects of the Gaussian remapping onto the variation of the
information flow with e for the exponential CML. We find a severe skew of this variation and
increased errors. This skew indicates that the Gaussian remapping of data significantly alters the
results of (N)TE calculation.
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the underlying process is not worth the cost, and we will restrain from applying the method.

5.10 Effects of Data Rescaling

Intuitively, the rescaling of the data should not affect the final (N)TE value as we shift and scale
all parameters uniformly. The study within our CML systems indicates these assumptions to be
correct. Nonetheless, if we rescale the data to very small or large values, numerical inaccuracies
might weigh more. For the data ranges we applied in this thesis, this effect proved negligible. We
will apply rescaling in the subsequent sections about noise dependence and surrogatization.

5.11 Noise Dependence

One of our (N)TE calculus applications is onto financial time series. These data mostly have
a low signal-to-noise ratio [20]. Therefore it is instructive to evaluate the effects of noise onto
(N)TE calculation. To accomplish this feat, we rescaled the data onto the [0,1] interval. Then
we add standard normal white noise that we scale with factors between 0.1 and 2. The results
are plotted in figure (5.16). There we can observe multiple effects. First, we find the intuitive
notion confirmed that added noise increases the (N)TE value error. Additionally, noise washes
out the underlying structure of (N)TE variation with the coupling strength e . This effect is more
prominent for finer than for less detailed resolution. Nonetheless, less detailed partitions can still
resolve some of the underlying structure. However, if we add large amplitude noise, all processes
yield a (within errors) constant evolution of (N)TE with e . In this high noise regime, the final
value of the quantity is purely noise-driven. We can also observe a similar effect for the higher
resolution binning. This effect is even present with zero noise where the resolution has a finite
sample effect induced maximum that causes lower resolution (N)TE evolutions to cross the ones
with higher resolution. For high noise amplitudes, these resolutions yield (N)TE values constant
over e variation at this point.
Another noise-induced effect is the non-zero (N)TE at e values where the unperturbed CML runs
into intermittency, periodic orbits, or fixed points and thus exhibits vanishing (N)TE. Due to the
added noise, here, the (N)TE values are greater than zero.

We can conclude that noise washes out the (N)TE values. Lower resolution proves more robust
than higher resolution for this application. Sometimes lower resolution variation lines intersect
those with higher resolution. We utilize this effect in the (N)TE maximizing binning criterion.

5.12 Surrogatization

We evaluated two surrogatization methods: shuffling surrogates and Fourier transform surrogates.
Figure (5.17) shows the effect of this surrogatization onto the data for the Bellows map example.
We observe that shuffling surrogatization fully destroys the variation of the (N)TE measure with
e . The rightmost column of the plot that shows the D(N)TE = (N)TE(Raw)� (N)TE(Shuffled)
looks almost like the variation with e of the raw data. The low e regime is an exception, however.
Here shuffling introduces higher (N)TE resulting in a negative D(N)TE value. We must keep that
circumstance in mind when evaluating time series with low information flow against surrogatized
data.
Shuffling surrogates (figure 5.17a) result in the variation with e of the (N)TE values to straighten

out. Nonetheless, the resulting relation still shows some features, such as an increase and decrease
at low and high e values and two local minima, which are present for finer partitions. The system
entering periodic orbits causes these minima. This orbit allows for fewer different values and,
therefore, desaturation occurs earlier for the increase in resolution.
The Fourier transform surrogates (figure 5.17b) exhibit different behavior as they keep the linear
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(a) TE.

(b) NTE.

Figure 5.16: These figures show the variation of the information flows with e if we add scaled
standard normal white noise (in % of signal range) for the data rescaled to [0,1]. We find an
increase of the error with an increasing noise level. This increase coincides a washout of signal.The
lines correspond to a geometrically spaced subset of 2 to 100 bins on a dataset of 300 points. We
have evaluated the TE (5.16a) and logm NTE (5.16b).
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(a) Shuffling Surrogates

(b) FT Surrogates.

Figure 5.17: This figure shows the (N)TE for the raw (left column) and shuffling-
surrogatized (middle column) Bellows map CML. Within the rightmost column we see D(N)TE
= (N)TE(Raw)� (N)TE(Surrogatized or Shuffled) . We find that this quanitity exhibits the same
evolution as the one of the raw data-set. This indicates that the measured information flows are
not stochastic in nature but reflect characteristics of the underlyin process.
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(a) Pearson r ). (b) Spearman P .

Figure 5.18: This figure displays surfaces of the variation of Pearson r and Spearman P with
binning and sample size (green) as well as for the unbinned data (red). We see that for an increas-
ingly fine partition the measure values covnerge to the value calculated from the unbinned data.

relation and destroy non-linear relation between the variables. Therefore, the e variation of the
(N)TE measure on the surrogatized data is still feature-rich. Nonetheless, the amplitude of the
residual information flows is far smaller such that the D(N)TE variation preserves shape at a lower
magnitude. FT surrogatization has a caveat. The method broadens the spectrum of the data (even
into ranges outside the image of the underlying map). Therefore one has to apply a rescaling
onto the original data range of the surrogatized dataset. Only then can we use the same partition
for (N)TE calculation of both samples while ensuring comparability. We can also test the FT
surrogatized data against shuffling surrogates to detect non-linear relations significantly larger
than zero using equation (41).
All in all, this analysis suggests that we can utilize the shuffling to test for non-zero information
flow between the variables and the FT surrogates to test for non-zero information flow via non-
linear relations. In this thesis, if the D(N)TE values are smaller than zero, it is assumed to be
consistent with zero as in this case, any information flow in the unprocessed sample is minor than
information transfer between random time series and thus considered negligible.

5.13 Comparison with linear Measures

As the last step to evaluate the (N)TE calculus, we compare it to the linear measures Pearson r
and Spearman P. In doing so, we also apply the shuffling and Fourier transform surrogatization.
Results are displayed in figure (5.19). Figure (5.18) shows the variation of the two linear measures
with sample size and partition detail as well as for the unbinned data.
We will first start with discussing the linear measures before we compare them to (N)TE. Once

we employ a sufficient sample size and partition detail, the measure generally becomes indepen-
dent of these sample characteristics. This property is very desirable as it reflects the underlying
relations. In opposition to the (N)TE measure, r and P can process the raw data without a scale
change. The low opacity red surface reflects this in the plots in figure (5.18). We can see that a
low detail binning destroys so much information that the true r or P values are severely underesti-
mated. This effect becomes more prominent the smaller the sample size becomes. Another effect
is the overestimation of the measure for small sample sizes. This overestimation might be due to
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the overfitting of the small sample, meaning that the measure interprets random characteristics as
a signal. The effect of this randomness only dissipates for larger sample sizes.
In figure (5.19), we recover the finding that the linear methods show less dependence on the par-

tition detail. The variation with e for both r and P almost coincides with the unbinned (dashed)
variation line. The variation is different for the (N)TE measure that shows finite sample desatura-
tion effects for the finer partition.
A related effect also occurs for the linear measures on the FT surrogatized data: low detail parti-
tions that allow for only a few data values yield very high r or P values, respectively. All in all, the
measures still infer a linear relation from the residual data, consistent with the FT surrogatization
that only destroys non-linear relations.
For the (N)TE measure, the binning of the data introduces measured information flow even for
randomly shuffled data, though the variation with e is void of features. This voidness is induced
by the uniform random assignment of the data points of a fixed sample on a finite data range to the
different bins, giving rise to some probability differences conditioned on the influencing variables
past. For the linear measures shuffling of the data destroys any relation. However, it is notable
that for the (N)TE measure, the residual information flow after shuffling is still greater than the
information flow between FT surrogatized data.
We can conclude that surrogatization and data shuffling destroy the (N)TE variation features with
e . Other than the linear models, however, there is still residual information flow inferred. Its
amount depends on the partition detail level.

5.14 Summary of the Method Evaluation

Now, let us review the main findings from the (N)TE measure study with the four non-linear
CML systems. The first main observation is that the amount of information flow that can be
quantified depends on the detail of the partition. A finer resolution allows for the detection of
more information flow.
Regarding the normalization, we found that the division by the entropy of the influenced variable
conditioned on its past, H NTE, underperforms the logm NTE normalization as the dependence
of the normalizing entropy on the sample skews the measure. Nonetheless, this normalization
might prove helpful in other applications if researchers can adequately address its drawbacks.
Then the interpretation of the H NTE is more intuitive than that of the logm NTE.
Nonetheless, in this thesis, we will apply the latter normalization since we work with small
samples that then greatly suffer from the skew of the H NTE normalization.
Additionally, we found that sample sizes of at least 100 points are required to have an error of
< 5% for the (N)TE measure. Of course, bigger sample sizes are preferable.
Regarding partition detail, we reconfirmed the notion that smaller samples result in larger errors
of the measures. Additionally, smaller samples cannot resolve some underlying information flow
dynamics, which can be inferred by a flattened out variation of (N)TE with e that shows fewer
features.
We also evaluated several different binning methods but found no method to outperform others
consistently. The smallest standard deviation for (N)TE values was for methods that yield a
criterion for the number of equal-sized bins. However, for these methods, the final value now
depends on the sample size. A sample attribute that does not relate to the dynamics of the
underlying system that we studied.
Regarding the evaluation of binning methods, we also studied the behavior of an alternative prob-
ability estimator that incorporated the bin size as an information-carrying parameter. Trivially. for
equal-sized bins, its value was equal to the standard probability measure.
For unequal bin sizes, it sometimes showed lower and sometimes higher variance than the
ordinary estimator. This result is deemed unsatisfactory for further use of the adapted probability
estimator, and we will proceed with applying the (N)TE measure in this thesis with the standard
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Figure 5.19: This figure shows the effects of data surrogatization. Shuffling destroys all relations.
Surrogatization with Fourier transformation and phase randomization only destroys the non-linear
relations.The first method flattens the information flow evolution e . The second method shows
a spread of the data (that persists rescaling). This effect yields high (N)TE values for rough
partitions.
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probability estimator.
As these two approaches did not prove helpful to derive a "proper" binning method, we utilized
the two counteracting effects of increasing information flow and the finite-sample washout of
information flow with the partition detail. These effects cause a local maximum for the logm NTE
measure. We choose the binning that maximizes logm NTE. We incorporate some contribution
of information flow that is not caused by the underlying process but by finite sample effects.
However, we assume this contribution to be equal for all samples, and thus, we incorporate a
consistent bias into the model and, therefore, still retain relative comparability, which is the
desired property of normalization. This criterion cannot be used with the H NTE normalization
as the normalizing entropy normalizes for the desaturating effect.
Additionally, we evaluated the effects of data processing. We found no changes in (N)TE values
by uniform rescaling of the data and all relevant sample parameters.
We utilized rescaling to introduce and study the dependence of the (N)TE quantity on the
application of scaled white noise. These experiments confirmed the notion that more noise washes
out the features of the (N)TE variation with the coupling strength e of the CML system. The
resulting (N)TE value then is primarily dependent on the partition detail.
Surrogatization is a method that destroys the non-linear relation between time series while
retaining the linear ones. This method results in a spread of the sample range. If one wants
to calculate and compare (N)TE values pre and post surrogatization, rescaling the surrogatized
data on the original data range is required. This way, a consistent binning can be used, and the
quantities remain comparable, with only the non-linear properties of the sample being subject to
change.
Lastly, we compared the (N)TE measures with the linear measures Pearson r and Spearman P.
We found that the linear measures are less sensitive to sample size variation or partition detail
and do not suffer from quantifying residual relation of shuffled data. Nonetheless, (N)TE can
distinguish linear and non-linear relations via the application of surrogates. A feat of which the
linear methods are not capable.

Recipe for (N)TE calculus This study leaves us with the following recipe we will apply in NTE
calculation in the subsequent chapters:

• Apply autocorrelation function to determine lag for (N)TE calculation

• Scan the equal-sized bin number of the constituent time series that maximize the (N)TE.

• Sliding window analysis of sufficiently sized windows to obtain the temporal evolution of
the (N)TE over time.

• For comparability, sample sizes should be roughly equal.

• Apply FT surrogatization to each timestep and deduct this linear information contribution
from the (N)TE to quantify non-linear relation. Repeat this sufficiently often to obtain a
statistically valid result.

• If applicable, utilize linear measures to quantify the linear relation.

• If applicable, further processing of the resulting (N)TE time series.

Limitations This recipie has the following limitations. First, the value is still dependent on
sample size as larger samples allow for a finer resolution until desaturation occurs. This enables
the detection of more information flow and a higher transfer entropy. This effect is persistent even
with the logm normalisation as a finer partition uncovers more information flow within the same
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data.
Additionally, the method rests on the assumption that the finite sample effects are introducing
a consistent bias that is equal for all samples. This recipe has the following limitations. First,
the value is still dependent on sample size as larger samples allow for a finer resolution until
desaturation occurs. Thus, a larger sample detects more information flow and higher transfer
entropy. The actual information flow bounds the measure’s value. However, in insufficient sample
size regimens, the amount of information flow underestimation is a function of sample size. Even
with the logm normalization, this effect is persistent as a finer partition uncovers more information
flow within the same data.
Additionally, the method assumes that the finite sample effects are introducing a consistent bias
that is equal for all samples.
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6 Information Flows Between Futures

We will now apply our (N)TE calculus to a non-linearly related time series system. Therefore,
we will evaluate the information flow between future index returns during the (onset of) the
COVID-19 pandemic. To ensure comparability of the results, we will utilize the logm normalized
measure and from now on use NTE and TE interchangeably to refer to it.

This analysis is explorative because we have no rigorous underlying theory that yields a hy-
pothesized functional relation that is testable. This circumstance is precisely why the TE as a
non-parametric measure is a good measure for this application. Nonetheless, this investigation is
motivated by the a priori hypothesis that we expect a change in the information flow caused by
the turmoil and general insecurity caused by the global pandemic. We expect public discourse
and opinion to drive this change in information flow. To test this second-order hypothesis, we will
employ the economic policy uncertainty index (EPU) and the sentiment in an online discussion in
the Reddit forum. The first serves as a proxy for public discourse, whereas the latter is a proxy for
the private sentiment.
Additionally, we will qualitatively compare the change in information flow during the COVID-19
onset with the changes in information flow during other crises, namely the dot-com bubble, the
2007/08 housing crisis, and subsequent Lehmann Brothers bankruptcy. We will commence this
analysis by introducing the data we utilize.

6.1 Data

In section (5.4), we have established the data needs of the TE measure. Therefore the commonly
available data with the daily resolution is insufficient for our purposes. With this level of detail, one
could infer a value for TEy for the whole time frame. We, however, are interested in the temporal
evolution of TE and therefore want to employ sliding windows (see section 2.5.4). This interest is
why we need intraday trading data. We need sufficient data to robustly resolve information flow
on a sufficient granularity to uncover its temporal changes. This data is more difficult (and more
expensive) to procure. Nonetheless, we were able to acquire some intraday trading data for future
indices. Sadly, it was not possible to get the data of the same indices for all periods. Nonetheless,
there is still residual informative value in comparing these quantities, even though they stem from
evaluating differing underlying values.
We will start by introducing the data used for the study of the COVID-19 pandemic.

6.1.1 COVID-19 Onset Futures Intraday Data

To analyze the information flow, we use the intraday data of index and commodity futures. These
futures are contracts to transfer ownership of a specified item (goods, stocks, currency, etc.) at
a specified time in the future for a specified price. Market makers such as an exchange facilitate
these future contracts. Therefore, the trading parties do not necessarily need to know each other.
A rational (in the sense of value-maximizing) actor who buys a futures contract expects the value
of the underlying item to increase. This is called a long position. If the buyer’s expectation is met
and the price of the item exceeds the price of the futures contract, the price difference is profit
as the buyer still acquires the underlying value for the predetermined price. Vice versa, a seller
of a futures contract, is holding a short position and expects the value of the underlying item to
decrease. If this expectation is met, the seller takes a profit since (s)he can acquire the item for a
lower price than what the buyer of the futures contract will pay.

We use these futures as a proxy for the sentiment of market actors. This approach is motivated
by the fact that expectations about the situation’s future evolution rather than past events drive the
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futures prices.
Additionally, we will convert the raw price data into logarithmic returns:

ri = log
✓

pi

pi�1

◆
(109)

for the prices pi. The conversion into returns converts the time series into quantities that show
self relative fluctuations and thus enables comparability of indices with prices in different orders
of magnitude. The logarithmization is a bijective non-linear transformation that now associates
the sign of r j with the relative motion (� indicating a decrease and + an increase). Additionally,
they ease computation since upsampling of the data is done by summing over the log returns in
the respective period.

Let us now proceed to introduce the set of futures we incorporate into our analysis. Though
the names of these quantities sometimes seem unintuitive, we utilize the ticker symbols of the
respective futures throughout this analysis. We evaluate futures of the following indices:

• VG1. Euro Stoxx 50. The underlying index includes 50 large, publicly traded companies
headquatered within the euro zone.

• ES1. S&P500. The underlying index includes 500 of the largest US-american corporations.
Their contribution to the index is weighted by market capitalization.

• HI1. Hang Seng Index. The Hang Seng includes 50 of the largest companies traded on the
Hong Kong stock exchange. Their contribution to the index value is weighted by market
capitalization.

• NK1. Nikkei Index. The Nikkei index includes 225 of the largest companies publicly traded
on the Tokyo stock exchange.

• CO1. The CO1 is a future on the crude oil commodity.

To evaluate the temporal evolution of the NTE between these quantities, we employ sliding win-
dows covering one day. The results are daily NTE values between the intraday data of different
futures time series. The sample sizes are similar so that our entropy maximizing approach yields
comparable results.

Autocorrelation In order to determine the proper time lack for NTE calculation, we evaluate
the autocorrelation of the time series. The result is displayed in figure (6.1). Except for the
Reddit sentiment data, autocorrelation indicates no self-association of the variables. The quantity
decreases steeply and fluctuates around 0 for time deltas t > 0. The Reddit data shows a consistent
self correlation at around r(t) = 0.1 for t > 0. Therefore, we choose time lags of K = L = 1 for
all futures time series and K = L = 2 for the Reddit data.

6.1.2 COVID-19 Onset Reddit Data

To evaluate the influence of public perception about the COVID pandemic and the according to
sentiment onto information flow, we acquired a dataset from Reddit. Reddit is an online forum
where users can create posts and comment about many topics in communities called subreddits.
These communities are commonly referred to as r/<community name> mimicking the web
address of the respective subreddits. In addition to posting and commenting, users can vote on the
posts and comments. They then see the posts on the algorithmically curated newsfeed or visit and
explore a particular subreddit on the main page.
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Figure 6.1: The autocorrelation of all indices included into our analysis. indicates that we can
utilize K = L = 1 for all futures in our data set. For the reddit data we include two time steps into
the past as the autocorrelation is higher.

The data was acquired using the API to the pushshift Reddit dataset [6]. This API, however,
limits the number of requests per time. For the context of this thesis, this is why it was only
feasible to gather a limited amount of data. The pandemic itself, and certainly governmental
response, has become a politicized and partisan topic. We, therefore, chose to acquire data from
the subreddit r/politics, one of the largest and most political discussion forums on the internet
[46]. Nonetheless, subreddits and (online) communities, in general, might exhibit strong partisan
bias that even might change over time [33]. However, we chose to sample from r/politicswith the
hope that its large and ideological diverse userbase mitigates some of these polarisation effects.
This method was chosen over the alternative of hand-selecting smaller communities with a known
political bias to aggregate a dataset with diverse opinions. We included every post or comment
posted between the 29th of February 2020 to the 31st of May 2020 into the dataset when the
contribution contained covid or similar keywords.

At this point, we have to note that this approach still has incorporated biases. First, internet
access and the likelihood of a person to post an opinion online are likely to be a function of
the person’s socio-demographic background, economic position, political leaning and therefore
skews our sample. Additionally, we are only sampling from the r/politics subreddit and might
lose contribution from political fringe groups to our sample. Additionally, it is unclear whether
the opinions posted online even reflect the actual opinion of the posting individual, as polarising
statements tend to get more attention and are thus more visible. On top of that, we filtered the
posts only for a limited number of COVID-19 related keywords. Thus, we did not include posts
that used unrecognized alternative terms or wrong spelling. It is possible that the occurrence of
these alternative signifiers of the pandemic and related measures is related to a poster’s situation
and thus the corresponding stance towards the pandemic response. However, incorporating
more terms was not feasible because of the API request restriction. Nonetheless, despite these
limitations, the analysis of the Reddit data can provide valuable preliminary insights.

We will now proceed to discuss how the data from r/politics was processed to enable the
analysis employing transfer entropy. The data gathered from the pushshift API are the posts or
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(a) Empirical PDF . (b) Time evolution.

Figure 6.2: Time evolution and empirical PDF of COVID-19 related Reddit posts. There are
timeframes in the data where other topics were dominating the discussion and hence only insuffi-
cient COVID related data could be retrieved.

comments content as well as the sum of the up and downvotes (where +1 corresponds to an
up-and �1 to a downvote).
Subsequently, we applied a sentiment analysis using the Natural Language Toolkit [8] to assign a
sentiment to all the coronavirus-related posts and comments in our dataset. This method returns
a probability of a specific text to be either positive, neutral, or negative and a compound value
2 [�1,1] where �1 indicates maximum negative and +1 maximum positive sentiment. We use
this compound value for our analysis. To create matching time series of Reddit sentiment, we
downsample the individual time-stamped post sentiments to a mean sentiment of all posts within
a period to match the index values.

Sadly, we could not acquire a full dataset spanning the period with the available data because
of API request limitations. The final dataset contains stretches without data that were zero-padded
for analysis. The time series of Reddit sentiment before the padding operation is shown in figure
(6.2b). Figure (6.2a) shows an empirical PDF of the sentiment. We observe a skew towards
negative opinions about the pandemic.

6.1.3 Economic Policy Uncertainty

Another proxy to measure public sentiment is the Economic Policy Uncertainty (EPU) index [3].
The authors infer the index from newspaper coverage frequency. Articles are counted if they are
published in one of ten leading US newspapers and contain the triplet: "economy", or "economic";
"uncertain", or "uncertainty"; and at least one of "congress", "deficit", "Federal Reserve", "regu-
lation","legislation", or "White House". For the uncertainty in other parts of the world, the trans-
lations or names of the respective country-specific institutions were for country-specific newspa-
pers. The evolution of the EPU index in the three-time periods covered in the subsequent analysis
is shown in figure (6.3)
The time resolution of the EPU index is too low to apply the TE measure. Therefore, we only
evaluate the relation of the EPU to the other quantities with the Bravais-Pearson-Correlation.

6.1.4 Dot-com and Housing Crisis Data

Whereas the main focus of this section is the evaluation of the time series data of futures during the
onset of the COVID19 pandemic, we are evaluating other quantities for qualitative conclusions.
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Figure 6.3: This plot shows the temporal evolution of the EPU index in the three periods that
are evaluated in this section. We see that the COVID-19 EPU structure differs from the other two
because of the sudden spike that not relaxes to a baseline value but remains at an elevated level.
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Namely, we are studying the US housing bubble and the Dotcom bubble. Sadly, it was not pos-
sible to acquire sufficiently detailed data for the futures of the indices studied for the COVID-19
pandemic. Nonetheless, we were able to gather data for some of the underlying indices:

• STOXX50E. The Stoxx Europe 50 index is similar to the Euro Stoxx 50 index discussed
above. The difference to that index is that the index includes European companies from
outside the euro zone. Additionally, we are evaluating the index itself and not a derivative.

• TOPX. The TOPX index is an index containing 1111 Japanese stocks with a focus on elec-
tronics, financial services, and other modern industries. Again, we are evaluating the index
itself and not a derivative.

• SPX. SPX is the ticker symbol for the S&P 500 discussed above. Again, we are evaluating
the index itself and not derivatives.

The fact that these are stock return time series and not futures yields the limitation that we will
compare different quantities of a different type. Thus, we can understand any conclusions drawn
from this comparison merely to indicate a possible difference or similarity.

6.2 Crises Timelines

This section will briefly cover the timeline of significant events during the three crisis periods
analyzed in this thesis. The central crisis we are covering is the (at the time of writing still ongoing)
COVID-19 pandemic. Thus, our data roughly covers the first wave of the pandemic.

6.2.1 COVID-19 Pandemic

The COVID-19 pandemic started around November 2019 in Wuhan, Hubei, China, by zoonotic
transfer (likely from bats) [42]. The onset of symptoms of the first officially recognized SARS-
CoV-2 case occurred on the 1st of December 2019 [35]. Antibody studies suggest that the virus
was present in the United States by December 2019 [5]. The first case recorded by authorities
occurred on the 20th of January 2020. The first confirmed case within Germany occurred on the
27th of January 2020 [66], in Hong Kong on the 23th of January 2020 [53], and in Japan on the
16th of January 2020 [49].
A typical response to the outbreaks was lockdowns. That is the closure of business and leisure
activities. The scale and particular rules of the lockdowns vary by and even within countries.
The Federal Republic of Germany issued the first lockdown order on the 16th of March 2020 to
take effect six days later [26]. Within the US, the lockdown decisions were up to the individual
states. The earlies lockdown started in California on the 19th of March 2020 [12].
Hong Kong was fairly unscathed by the first waves of the pandemic and only imposed the first
partial lockdown of COVID-19 hotspot areas on the 10th of December 2020 [54]. In Japan, the
government does not have the authority to issue a lockdown order or penalize non-compliance.
Nonetheless, the advice of government agencies to self-isolate has largely been followed [59].

6.2.2 US Housing Crisis and Lehmann Bros Bankruptcy

In the years preceding the subprime and subsequent financial crisis, housing prices in the US
steadily rose. This increase is why buying homes on credit was incentivized, and credits were
given to people who could not afford them while accepting the to-be-purchased property with its
assumed increase in value as a security. These credits were coined subprime loans. Starting in
2006, property prices began to stagnate, and interest rates increased. This affected borrowers who
were holding loans with adjustable interest rates. Sometimes, these borrowers opted out of the
loan, leaving the bank with the property as the house’s value was lower than the loan plus interest.
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Hence, there was an incentive for borrowers to default. This dynamic sat in a spiral of declining
housing prices and more and more defaults.

The housing crisis spilled over into the financial sector because bundles of mortgages were
sold as securities to investment firms. These securities also lost value rapidly as more and more
constituent loans defaulted. On April 2, 2007, New Century Financial, the United States’ largest
subprime mortgage lender, filed for bankruptcy. Starting on the 18th of September 2007, the
Federal Reserve Bank started cutting interest rates and agreed to lend money directly to Wall
Street firms and not only commercial banks while accepting the mortgage-backed securities as
collateral. The economic downturn continues, and about a year later on the 6th of September
2008, the US Treasury announced to take over the struggling mortgage giants Freddie Mac and
Fannie Mae that jointly owned more than five trillion USD in mortgages. Thereby, it provides up
to 200 billion USD to the firms to enable them to finance mortgages for banks and other home
lenders.
Later that month, Merrill Lynch was acquired by Bank of America in order to establish trust
insolvency of the institution that was damaged by severe losses due to exposure with subprime
mortgages. However, a similar deal fell through with the Lehman Brothers investment bank.
It filed for bankruptcy on the 15th of September 2008, and roughly 25 thousand employees of
the firm were laid off. This bankruptcy was contrary to the assumed too big to fail for large
investment firms and led to a large amount of distrust regarding money lending in the financial
sector. The resulting loss of trust inhibited the flow of capital to the producing sector and damaged
the economic development around the world for the upcoming years.

6.2.3 Dot-com Bubble

The introduction of the internet to consumers in the 1990s allowed the internet economy to
emerge. Speculative venture financing firms backed many new business models. These venture
capitalists rely on a later sale of their stake in a company to realize a return on their investment.
Sometimes, this is facilitated with an initial public offering of the companies stock on a stock
exchange. Until the dawn of the new millennium, these internet stocks were hyped and rose in
value.

Nonetheless, some of them had to close shop as they could not generate a sustainable business
model. As a result, the stock valuations began to plummet. The NASDAQ index ends the year
2000 at 2470.52 points - 52% lower than its peak in March of the same year at 5132.52 points.

6.3 Transfer Entropy During the COVID-19 Pandemic

In this section, we will evaluate the TE between the futures during the COVID-19 pandemic.
Therefore, we start with evaluating whether the entropy maximizing binning criterion devised in
the CML model systems yields promising results when applied to real-world data. Figure (6.4)
shows example surfaces of the TE value by bin variation of the relation between the VG1 and
ES1 futures on the 24th of March 2020. There we do see that the partition detail variation of
the measure constituent variables does yield a maximum. However, the desaturation is far more
prominent for the ES1 variable than for the VG1 variable. The TE value decreases from a peak
towards a constant value for an increased resolution of the ES1 future time series. For the VG1
future time series, the value of the TE fluctuates less, and there is no apparent decline within the
scanned bin range. Therefore, we will evaluate these maximum binning pairs individually for all
sliding window batches of the time series data.

The temporal evolution of the NTE with daily resolution at the onset of the first wave of the
COVID-19 pandemic is displayed in figure (6.5). We see that the NTE for all directional index
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(a) NTEES1!VG1. (b) NTEVG1!ES1.

Figure 6.4: This plot shows the NTE value surface generated by the variation of the binning of
the constituent time series ES1 and VG1. Maxima of the surfaces are indicated by the red triangle.
Within the displayed bin ranges the desaturation effect of TE is far more prominent for the ES1
variable than for a finer resolution of the VG1 variable. While the latter exhibits a peak, it is far
less prominent.

pairs fluctuates about a mean value. Nonetheless, there are extreme values, mostly towards lower
values.
A striking feature is the increase of all NTEs starting at about March 2020. Before we evaluate
this change in dynamics, we will cover qualitative differences in the pre-outbreak period.
During that time, the ES1 future has the most significant NTE contribution from the Hang Seng,

HI1, future and the crude oil, CO1, future at a value close to 0.4. The other two - VG1 and NK1
- futures exhibit less information transfer with NTE values fluctuating at about 0.2. These NTE
values increase for all futures above 0.4 at the onset of cases. In Europe, this occurred at the
beginning of March 2020. The general insecurity might explain this increase regarding possible
lockdown measures and the economic response toward the impending COVID crisis. The NTE
values decrease for the information flow from the VG1 and NK1 in April 2020 but remain higher
for the other two futures. During this last period, the information flow from the HI1 time series
exhibits two atypical values. These coincide (at least partially) with an atypical minimum of the
information flow from the VG1 future.
Notably, the information flow from all other evaluated indices towards the ES1 value converges
for the peak information transfer of all indices in March 2020. The same effect occurs for all
index pairs. Nonetheless, it is the most pronounced with the ES1 as the influenced variable.
Generally, we can observe that the crude oil and Hang Seng futures have a more significant
influence throughout the period. We can speculate this to be caused by Hong Kong’s proximity
to China, the outbreak epicenter, and the fact that investors might understand the Oil future as a
proxy for global trade. However, we must note that the first wave was reasonably mild in Hong
Kong and that the government implemented no lockdown measures. In the US, lockdown orders
went into effect later than in Germany, for example, and there were no lockdown measures in
Japan. This fact can be an indicator of the lower NTE value from these regions.
This interpretation, however, does not explain why we calculated the different levels of NTE
before the first cases.
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Figure 6.5: This plot shows the temporal evolution of the information flow towards the variable
indicated on the y-axis. We see an increase in information flow in March 2020 consistently for
most curves.
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Let us now proceed to discuss VG1 as an influenced variable. Again HI1 and CO1 are exerting
the greatest influence on the evaluated futures. However, the difference in information transfer
between these influencing variables is smaller than for the previous case. Generally, the level of
information transfer onto the VG1 future is slightly lower. The time series all exhibit the same
increase at the beginning of March 2020. In this period, the magnitudes of the NTE of all futures
pairs attain a similar magnitude as in the previously discussed ES1 case. However, in April 2020,
we only see a decline of information flow from the NK1 future, whereas the other time series
pairs yield an elevated NTE compared to the 2019 data.
While this data is not sufficient to draw definitive conclusions, the temporal evolution of the NTE
from the other futures might be explained with the same reasons as above. Europe’s slight lead
might explain the additional influence of the ES1 future with the implementation of pandemic
response measures that influenced US decisions.

Generally, the NTE information flow towards the HI1 future is smaller than the two previously
discussed cases. It shows the same temporal evolution, but the information transfer before the
increase in March 2020 is between 0.15 and 0.3. The peak of the increase in March is at 0.45. The
information flow from all other indices subsequently decreases but remains higher than before the
increase in the 0.2 to 0.4 range.
Throughout the evaluated period, the amount of information flow from lowest to highest
originated from NK1, VG1, ES1, and CO1. Hence, again, the oil futures exhibit the most
information transfer. The general lower level of the information transfer might be due to the
geospatial proximity (at least compared to the US, Europe, or Japan) of Hong Kong to Wuhan.
This proximity could indicate investors are less likely to be looking in other parts of the world for
pandemic responses or its effect on the economy as these are expected to lag behind the Hang
Seng Index in Hong Kong.

Let us now proceed to evaluate the information transfer towards the Japanese NK1 future.
Like with all other variables, we see a considerable increase in information flow in March 2020.
The absolute NTE values, however, are comparable to the previously discussed case of the HI1
futures. Primarily, the VG1 (S&P 500 derived) future shows a comparably small influence on the
NK1 index below a value of 0.2 until the March increase. The other three influencing variables
fluctuate around the 0.2 value, and their temporal evolution intersects. In March, all NTE values
peak at around 0.4.
This temporal evolution and relative magnitude are surprising since the Japanese economy heavily
relies on imports and exports. Additionally, to stay consistent with the reasoning above, we would
expect a heightened influence of the HI1 futures time series. Maybe other mechanisms, unknown
to the author, such as cultural preferences, trust in government responses, or similar methods, can
explain this deviating evolution.

Lastly, we discuss the influence of the four index-derived futures on the oil future, CO1.
The temporal evolutions follow the same familiar pattern and exhibit an increase in March 2020.
Additionally, except for the March 2020 peak, the HI1 and ES1 futures consistently show a higher
information flow towards the CO1 evolution than the NK1and VG1 indices. The values of the
former fluctuate around 0.4, the ones of the latter two around 0.2. All NTE values peak at around
0.6 in March 2020. The subsequent decline is more prominent for the NK1 and VG1 futures than
the HI1 and ES1 futures. All declines saturate at an elevated level compared to the values before
March 2020.
Again, this co-evolution is striking since the US and Japan are also severely involved in global
trade. Whereas one could theorize that the lower influence of the VG1 future is due to the large
domestic market and oil reserves of the US, the same is not true for Japan.
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The most striking feature of all the co-evolution of NTE is the increase of the measure in
March 2020. Whereas we can only speculate for the causes of the different information flows,
the increase in information transfer indicates a departure from market efficiency, which results in
arbitrage opportunities [20].
It is important to note that all values contain contributions from small sample desaturation. Thus,
they are comparable, but our approach does not conclude that another explains x% of one future
time series.

Non-Linear Contribution We will now proceed to discuss the same measure evolution but
calculated with FT surrogatized datasets. The values displayed in figure (6.6) are calculated by
means of equation (41).
The first striking difference to the unprocessed data is that while non-linear information flow
between the variables to some extent persists in the March 2020 period, it vanishes for some
pairings in the period before that. Afterward, it is significantly reduced. Unsurprisingly, we also
find a reduced magnitude of the persisting signals.

This effect is especially prominent with ES1 and VG1 as influenced variables. For these two,
there is still significant non-linear information flow from the CO1 and HI1 futures. Except for
the March 2020 period, the NK1 and VG1 or NK1 and ES1 futures contribution, respectively, is
consistent with zero information flow. We now compare the non-linear information flow from
the CO1 and HI1 to the ES1 and VG1 futures to the ES1 information flows in the unprocessed
dataset. From this comparison, we can infer from the magnitude of the NTE values in March
2020 that about two-thirds of the information dynamics are due to non-linear relations.
Regarding the HI1 future, only the crude oil time series has a significant non-zero contribution
outside the March 2020 increase. Nevertheless, even in that period, the non-linear information
flow from the ES1 and VG1 time series remains lower than 0.15. The NK1 non-linear information
flow flattens at about NTE = 0.2 whereas the CO1 non-linear information flow reaches 0.3.
The picture is similar to the NK1 futures as the influenced variable. Here, VG1 and ES1 future
only yield information flow consistent with zero outside the March 2020 period and even within it
is never higher than 0.1 with one exception at the beginning of March 2020 where the non-linear
flow of information from ES1 to NK1 attains a value of about NTE = 0.2.
When we evaluate the non-linear flow of information towards the crude oil, CO1, futures, we find
vanishing flow from the NK1 futures outside the Mach 2020 period. There, also the ES1 and VG1
information transfer values stay below 0.1. The information flow from the Hang Seng HI1 future
fluctuates around that value. An increase in information flow from this index is barely noticeable.
It is nonetheless for the information flow from NK1, ES1, and VG1. The last one exhibits a sharp
peak at the beginning of March.10

From this analysis of non-linear information flows, we can conclude that flow from crude oil
futures influences all the other indices. Additionally, there is non-linear information flow from the
HI1 index futures to the ES1 and VG1 futures. The NK1 future seems to be largely unaffected by
fluctuations in the other index futures (but not from crude oil futures).
This independence allows the speculative inference that oil prices are causally at an earlier point
within the global economic evolution. If one follows this reasoning, however, the same must be
valid for the HI1 index. There is no theory (that the author knows of) that suggests this empirical
finding for the latter.

Bootstrap Measure Comparison We will now evaluate the information flow against the flow
of shuffled time series, where all linear and non-linear information flows are purely by chance.
The figure (6.7) then shows the results according to equation (41). The most striking difference to

10This peak does not coincide with April 20, 2020, the time where the COVID-19 pandemic drove oil prices negative.
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Figure 6.6: The figure displays the information flowing through non-linear relations between the
futures. We see that few information flows toward the CO1 future but it is associated with all other
variables in some way.
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Figure 6.7: This figure shows the information flow between the index futures when we only
evaluate the parts significantly different from 0. We can see that the influence onto the CO1 future
is far smaller than its influence on other futures.

the previous results from the figure (6.5) are the vanishing information flows from NK1 and VG1
to ES1, from NK1 and ES1 to VG1, from VG1, NK1, and ES1 to HI1, and from ES1 and VG1 to
NK1 at the pandemic onset up until the March 2020 increase. There the information flow from all
to all futures is significantly different from zero.
Nonetheless, there remain great differences in magnitude. For example, the information flow
from the NK1 and VG1 futures to the ES1 future peaks at about 0.2. It peaks at 0.4 from HI1
and CO1. With VG1 as the influenced variable, all information flows are smaller in magnitude.
The flow from ES1 does not exceed 0.1. A similar fact is true for NK1 as the influenced variable.
Here, only CO1 is significantly larger than 0.2 for extended periods. The information flow from
the other indices, for the most part, does not exceed 0.1.
Across all the index futures, the information flow from the crude oil future is the largest. With

ES1 and VG1 as the influenced variables, the information flow from CO1 is similar to that from
HI1. Notably, ES1 exerts no influence onto VG1 when corrected for the stochastic contribution
by bootstrap shuffling.
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With the Hang Seng futures, HI1, as the dependent variable, information flow from CO1 is the
only one significantly larger than 0 outside the March 2020 period. Within that timeframe, the
flow from NK1 is also larger than zero and peaks at NTE ⇡ 0.2. The flow from ES1 and VG1
remains consistent with zero.
When we evaluate information flow towards the NK1 future time series, we only observe
information flow from the crude oil futures. Other information flows are consistent with zero.
Interestingly, while there is a slight increase in the information flow starting March 2020, the
increase and subsequent decrease are far less pronounced than for other variable pairs or in
comparison to the unprocessed sample results.
Lastly, if we evaluate the information flow to the CO1 index, we find little indication towards this
peak. The normalized information flow is with one exception NTE = 0.1 and mostly even smaller
then 0.05. While the March 2020 period still exhibits the most nonzero information flows onto
the CO1 independent variable, these are still very small and show less dominant peaks than the
other variables. This result is surprising since the analysis of the unprocessed data did not indicate
this structural difference in information flows.
We can draw the following conclusion from the above analyses: considerable information flows
from the CO1 future to all other analyzed indices. NK1 only receives information flow from the
oil futures. The Hang Seng future, HI1, is influenced by the NK1 future and the oil future. The
VG1 index receives information from all indices except the ES1 future, and all other variables
influence the ES1 future.

Non-Linear Bootstrap Measure Comparison Lastly, we evaluate the residual information flow
when we bootstrap shuffling surrogates from the FT surrogatized data. The result is the amount
of non-linear information flow that is not due to stochastic effects. It is displayed in figure (6.8).
Strikingly we see that the non-linear information flow from the index futures towards the CO1
time series is consistent with zero throughout the whole analysis period (with one minor exception
from NK1 with NTE = 0.002 in April 2020). CO1 is the only time series that exhibits non-linear
information flow towards the NK1 time series. Interestingly, there is no apparent increase in
information flow around the March 2020 period. While there are higher non-linear information
transfer values, this effect is not pronounced and later than the increase we observed in the previous
set-ups.
This temporal evolution is different from the HI1 future as the dependent variable. Here the non-
linear influence is concentrated in the later period starting in March 2020. The information flow
from the CO1 future is larger in magnitude than the one from the NK1 future. The former peaks
at NTE = 0.3 and the latter below NTE = 0.1. There is no nonzero non-linear information flow
from the other variables.
Both VG1 and ES1 receive non-linear information flows from the CO1 and HI1 futures of similar
magnitude. This flow did only subtly increase in March 2020. There are only minor additional
non-linear information flows from the NK1 to the VG1 future and from the NK1 and VG1 future
to the ES1 future. These flows, however, happen in the March 2020 period.

Summary of Information Flows Between Futures We can summarise these findings as
follows. For the unprocessed data, we find information flows between all the time series.
These information flows increase starting March 2020. However, CO1 is (with one exception)
still the origin and not the receiver of information flows. Significantly higher information flow
also occurs from the NK1 to the HI1 futures. Figure (6.9) displays these information flow changes .

Subsequent analysis with FT surrogates reveals significant amounts of these information flows,
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Figure 6.8: This figure shows the residual information flow after processing the sample with
Shuffle and FT surrogatization to infer the non-linear information flow between index futures that
is significantly different from zero. We again find the foundational influence of the CO1 future.
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(a) Information flows before March 2020

(b) Information flows in March 2020

Figure 6.9: This figure displays the information flows before (6.9a) and during (6.9b) the March
2020 period where the first lockdown measures were discussed and implemented. A thin line
indicates an information flow of NTE ⇡ 0.1, the medium thickness indicates a flow of NTE ⇡ 0.2,
and the thick lines indicate flow that breaks NTE = 0.3. When we compare the two plots, we see
that in March 2020, more information flows along established connections, and new channels are
formed. The whole network is more tightly knit.
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especially towards the ES1 and VG1 futures, to be non-linear. This composition is different for
the HI1 future that only attains non-linear information flow from the oil future, which consistently
receives no non-linear information contribution more significant than stochastic noise from any
other of the analyzed futures time series. However, there is residual non-zero information flow
if we consider the linear component. The non-linear information flow exhibits the March 2020
increase with a reduced amplitude or not at all compared to the total contribution.

6.3.1 Economic Policy Uncertainty Information Flows

We have speculated that the increase in information flow stems from the insecurity of market
participants regarding the development under the changing dynamics caused by the pandemic.
They might refer to the development of other indices to decide to buy or sell rather than sticking
to their previous methods.
To test this hypothesis, we will utilize the EPU index (green curve in figure 6.10b). Figure (6.10a)
shows the linear correlation of the policy uncertainty with the NTE value. Each tile in the heatmap
displays the value of r between the EPU index and the information transfer from the row to the
column variable. The stars indicate the significance level (a = 0.05, 0.01, 0.001 ).
We find that information flow from the CO1 index is positively associated with policy uncertainty.
These information flows are also the strongest for each influenced variable respectively. All the
outgoing information flows of the NK1 are also positively correlated with policy uncertainty. All
these relations are significant with an a error equal to or less than 5%.
Contrary to these findings, the outbound information flows of the HI1 future toward the NK1
future are negatively correlated. The same is true for information flows from the VG1 to the HI1
index. Both of these negative correlations are significant on a 5% level. Their cause is unclear.
Maybe closed borders could have had an effect. Nonetheless, this finding is surprising since the
information flows in the qualitative and heuristic analysis above seemed similar to the other ones.
The same is true for the information flow towards the CO1 future. Whereas we found these to be
small and to some extent consistent with zero, the correlation of information flow with economic
policy uncertainty for all others except the ES1 future is significant at the 1% level and � 0.25.
To further explore these connections, we model the daily information flows between the variables

as a directed graph and obtain the temporal evolution of the link density. The result is shown in
figure (6.10b) together with the temporal evolution of the EPU index on the right y-axis. The two
quantities are correlated with r = 0.46 at a confidence level of p = 1.47 ·10�8.
We can therefore conclude that the amount of information flow between variables increases with
economic policy uncertainty. This flow indicates the loss of efficiency in the market [20] and may
create arbitrage opportunities. Nonetheless, some links exhibit a significant negative correlation
of information flow with policy uncertainty.

6.3.2 Online Discourse Sentiment Information Flows

We will now evaluate online discourse about the COVID-19 pandemic as a proxy for public sen-
timent and insecurities during the pandemic. The results are displayed in figure (6.11). It is
important to note that given the difficulties in data acquisition, we only evaluate the timeframe of
increased information flow in between the futures time series starting in March 2020.
The upper left plot (6.11a) displays the information flow from all the log-return time series of the
futures towards the Reddit sentiment data in the upper panel and the opposite direction in the lower
panel. The magnitude of the flows is higher than what we have previously found for the informa-
tion flows in between time series. Interestingly, these information flows seem to be reasonably
symmetric.
Interestingly, this symmetry is broken when we evaluate the flows against shuffled data with the
formula (41). Figure (6.11b) shows the results. We find that while the information flow towards
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(a) Correlation, r , of the TE between futures and
the EPU. (b) Link Density of Network and EPU.

Figure 6.10: These plots show relation of the information flows with the EPU index. On the
left (6.10a), we see the asymmetric TE values for flows between variables. The stars indicate the
significance level, a = 0.05, 0.01, 0.001. The right (6.10b) plot shows the evolution of the EPU
index and the link density. We find a strong correlation with r = 0.46 at p = 1.47 · 10�8. The
key takeaway of these figures is, that economical uncertainty is correlated with higher information
flow between futures time series.

the Reddit sentiment gets low NTE  0.07, it peaks almost an order of magnitude higher for the
information flow from the Reddit data. The information flows from and to the different indices
seem similar when we only compare them within the respective directionality. We find a similar
picture when we only evaluate non-linear data. The residual information flows from FT surrogate
time series to the sentiment dataset peaks at about 0.2. Interestingly the non-linear flow from NK1
and VG1 is even lower than from the other time series, especially in the latter part of the analyzed
period.
This difference in magnitudes is not the case when we evaluate it the other way around. The non-
linear information flows towards the Reddit data peak at 0.5, and there seems to be no qualitative
difference between the flows from different origin futures.
Lastly, we evaluate the non-linear flow against shuffled FT surrogatized data. These are the non-
linear information flows likely not caused by statistical fluctuations. There we find non-linear
information flow towards the sentiment data only of diminished size. Nonetheless, there are
still significant non-linear flows from the Reddit data. These fluctuate wildly up to a peak of
NTE = 0.4. We can therefore conclude that about 10% of the fluctuations of the index futures is
linearly related to the sentiment data. On the other hand, ES1, VG1, and HI1 receive almost solely
linear information flows.
Thus within the analyzed time frame, models exist that operationalize sentiment data to infer future
prices of the index futures.

6.4 Comparison of COVID-19 Information Flow Variation to Other Crises

After analyzing the relation between the index futures and their relation to economic policy
uncertainty and public sentiment, we will proceed to evaluate the dot-com bubble and 2008
financial crisis to compare information flows. Sadly, this analysis will be of limited informative
value since we could only obtain index-level data in the accuracy necessary to compute NTE
values. These, however, are no explicit instruments operationalizing future expectations about
economic developments as futures do. Therefore, we also briefly cover the information flows
between indices during the time of the COVID-19 pandemic. All these information flows are
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(a) Unprocessed data (b) Shuffled data

(c) FT surrogates (d) FT and shuffling surrogates

Figure 6.11: This figure shows the information flow from and to the sentiment in COVID-19
related online discussions. We find significant linear and non-linear contribution. These significant
flows are far greater for the information flow from the discussions than for the reverse direction.
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shown in figure (6.12).
First of all, we find that the levels of information flow between the indices exhibit far smaller

amplitudes. They are about one order of magnitude smaller than the information flows between
the futures. Additionally, in the March 2020 period (where we found an increase for the futures’
transfer entropy) we detect a minimum for the information flow between the indices. Furthermore,
the information transfer seems to saturate at certain thresholds as several stretches of almost
constant TE are present. This saturation is not an artifact of leaky data but a feature of the
underlying data.11 These patterns are constant when held against the information flows between
shuffled datasets.
We see similar behavior for the housing crisis. Here the information flow between indices drops
mid-September 2008, coinciding with the Lehman bankruptcy. These developments persist when
we utilize shuffled data.
We do not find such a point for the dot-com bubble. This finding is consistent with the fact that
this crisis unfolded over a more extended period and did not have stand-out events associated with
it.

We can summarize that we find similar patterns in the information flow between index time
series in the Covid-19 and 2008 housing crises. However, it would be a leap of faith to infer that
this indicates a similar pattern of the information flows between futures. In that sense, we sadly
cannot utilize this index level data reliably for analysis and comparison of the information flows
between futures in the different crisis periods. This inability is because the information dynamics
between these financial instruments are too different.

6.5 Conclusion of the Application of Transfer Entropy to the COVID-19 Futures

Let us now draw a conclusion about the information dynamics between futures in the onset of
the COVID-19 crisis quantified using transfer entropy. The most striking feature of the data we
found was the increase in information transfer starting in March 2020. That coincides with the
public discussion and subsequent implementation of lockdown measures. Interestingly, there is a
directionality with information flowing the CO1 oil future towards all other variables, which re-
ceived much less information flow. Thus, we identified a directionality of information flows. This
directionality is shown in figure (6.9).
We find that a similar dynamic is true when we evaluate only the non-linear dynamics, and when
we compare these flows against stochastic information flows from shuffled datasets, this feature
of the system is even more pronounced. This flow underlines the paramount influence oil price
has on the expectation of economic (or at least price) developments. Additionally, the existence
of these information flows are an indicator of the inefficiency of the market, which in turn enables
the opportunity for arbitrage.
With the economic policy uncertainty analysis, we found that the magnitude of the information
flows (for the most part) and thus the market inefficiency is linearly related to the economic policy
uncertainty. This relation indicates that the times of crises coincide with times of market ineffi-
ciency. This inefficiency then singles out the uniqueness of the COVID-19 crises, which exhibited
the highest levels of EPU (see figure 6.3). We did not find an indication for these relations on the
index level data. These samples did not prove helpful in comparing different time frames.
Lastly, we also found significant information flow from online sentiment towards the future. In-
terestingly, this flow is unidirectional because more information flows from the sentiment to the
futures prices than vice versa. This directionality indicates the usefulness of operationalizing sen-
timent in order to learn about future returns of future prices.

11Missing values in the data have been replaced and would result in vanishing TE.
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(a) Covid (b) Covid against shuffling surrogates.

(c) Housing Crisis (d) Housing Crisis against shuffling surrogates

(e) Dot-com (f) Dot-com agains shuffling surrogates

Figure 6.12: Transfer entropy between stock indices in the three time periods.We find the struc-
ture of these flows to be such different from flows between index futures, that a comparison is can
only yield intuition not insight.
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6.6 Methodological Evaluation and Limitations

While the results of this analysis are undoubtedly interesting, our methodology suffers some
drawbacks. The major limitation of the entropy maximizing approach of this thesis is that the
uniformity of the finite sample desaturation remains a postulated assumption. Additionally, rea-
soning suggests that the increasing contribution from an increased resolution and the decreasing
contribution from the finite sample effects are equal at the point of maximum entropy. This
assumption, however, might also be false. Should there be systematic effects, our approach would
yield systematic over-or underestimation of actual information flow.

Nonetheless, the increase of transfer entropy we identified for the March 2020 period remains
consistent throughout different partition details. The last drawback of our approach is that we
conducted an explorative analysis not driven by theory. Therefore, we were able to speculate
about the causes of the difference in and directions of information flow, but we did provide or
tried to verify an existing explanatory framework.
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7 Conclusion

This thesis aimed to evaluate, develop, and apply transfer entropy as a non-parametric measure to
detect directed association (or "causality") between continuous variables. Therefore, in chapter
(2), we first developed different scale types and found that the main problem of TE for our
application was in the mismatch of scale types. Based on these insights we discussed several
binning methods, jD, in chapter (2.3) that mapped the data sampled from an unknown continuous
distribution onto discrete values on which we can apply the information-theoretic measure. Some
of these binning methods allow for bins of different sizes. We hypothesized that then the bin size
carries information about the sample and developed and adapted discrete probability estimator in
the chapter (4) that takes the bin volume in the Rn into account.
To compare the binning methods and evaluate this adapted estimator, we employed coupled
map lattice systems in the chapter (5). This analysis is an extension of the studies conducted
by Schreiber [60] who introduced the TE measure. We scanned the full range of the coupling
strength, e 2 [0,1] between the lattice rows and evaluated the Bellows, exponential, and logistic
map additionally to the tent map considered by Schreiber.

We utilized these synthetic systems to quantify the dependence of the measure on various
adaptations and sample characteristics. The inciting finding was the severe dependence of the
measure on the partition details. This fact renders comparisons of the measure useless. Therefore,
we evaluated two different but commonly used normalizations (see chapter 3), the normalization
by H (Yt |Yt�L) the entropy of the influenced variable conditioned on its own past called H NTE
and the logm NTE that is the normalization by the number of categories, m, of the influenced
variable. The number logm is the maximum value of H (Yt |Yt�L). In section (5.3), we found
that while the H NTE offers a more intuitive interpretation, it exhibits severe drawbacks when
compared to the logm NTE measure. Most importantly, the normalization, H (Yt |Yt�L) is itself
sample dependent which skews the variation of information flow with the coupling strength e
compared to the unnormalized measure. This skew is at times so severe that local minima become
local maxima for the normalized quantity. Additionally, H NTE suffers a stronger washout of
e variation features than the logm NTE measure. Additionally, it also exhibits stronger skew
for low e values. These findings are of special importance given the widespread use of the H

NTE normalization. Nonetheless, it offers an easier interpretation. Hence, if one can properly
address its drawbacks with large enough samples and common signal shape and discretization,
researchers might still opt for H NTE. We, however, decided to use the logm NTE measure for
further analyses.

Our subsequent analysis regarded the sample size. Here we found that (N)TE needs large data
sets. This need is due to the joint entropy term, which is cubic in the number of categories of the
discretization. In our applications, we found that the error of the measure was smaller than 5%
for more than 100 data points.
Additionally, we evaluated the dependence of the measure on the discretization method in the
chapter (5.6). We found that no method consistently outperformed the other ones. Subsequently,
we evaluated the adapted measure with a probability estimator that incorporates bin size. It is
not easy to quantify performance when the underlying form of the probability is not known.
Additionally, we face the problem that we need a discretized probability mass, not an estimator
for the probability density as the later one integrates, but not sums to unity. We decided to
quantify performance by consistency, and therefore scored by minimal standard deviation,
s . The new estimator showed improved performance for some, and decreased performance
for other binning methods. For equal-sized bins, the adapted estimator recovered the common one.

Therefore, we could not justify the application of this adapted estimator, but introduced
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another criterion to enable robustness for the (N)TE measure in section (5.8). Namely, we
utilized the counteracting effects of increasing information transfer with increasing resolution.
When we resolve more information, more flow can be detected. Contrary to this, finite sample
desaturation in the measure computation results in decreasing information transfer for increasing
resolution. Therefore, the measure must exhibit a local maximum. We chose this value as the
final (N)TE value with which we then determine the "proper" binning. This approach only works
for equal-sized bins as other methods converge to maximum information transfer. The same is
true for the H NTE normalization. This measure shows the same desaturation effects such that H

NTE converges to one and does not exhibit a finite NTE maximum that carries information.
The caveat of this method is that it rests on the unvalidated assumption that the bias introduced by
the small sample effect is the same for all samples. It is thus still a function of sample size. This
effect is also present for the unnormalized measure and is controllable by keeping the compared
sample sizes constant.

In section (5.9), we then evaluated the effects of rank-ordered remapping onto a gaussian.
With the method, one can transform a sample with an unknown distribution towards a target
distribution. However, the method severely altered the information flows between variables and
we will, therefore, not apply it. Intuitively, however, simple rescaling of the data does not affect
transfer entropy if applied uniformly.
We also analyzed the effects of noise on the information flows in section (5.11). We found that
for decreasing signal-to-noise ratio, the information flow becomes more and more a function of
the partition detail. Additionally, errors increase.
Subsequently, in section (5.12), we evaluated data surrogatization with Fourier transforms, by
shuffling, and their combination. We validated that we can utilize the former to test for flows
of information by non-linear relations and the latter for flows that are significantly higher than
noise-induced information flow. The methods are combined to attain a value for non-noise
induced information flows via non-linear relations.

When comparing the TE to linear association measures, we find that it exhibits a stronger
dependence on the sample characteristics. Nonetheless, it provides valuable insights and does not
assume a functional form of the relation.
We concluded chapter (5) with a TE calculus recipe we then apply to COVID-19 data. The
analysis of the futures during the first wave of the COVID-19 pandemic in the chapter (6)
was exploratory and not driven by theory. This approach also represents limitations to the
result, which we cannot contextualize within the framework of a theory to interpret the results.
Nonetheless, our investigation was motivated by the assumption that the information flows during
and before the pandemic are different. We validated this assumption with findings from the data.
Information flow increases during the March 2020 period where the first lockdown measures were
discussed and implemented. With shuffling and Fourier transform surrogates, we also identified
a hierarchical structure of information flow. The origin of our analyzed time series was the crude
oil future, CO1. Downstream follow the NK1, HI1, VG1, and ES1 index futures. We also found
that the linear and non-linear associations between variables differ. For example, the information
flow from VG1 to ES1 mainly utilizes linear channels.
We further found that economic policy uncertainty positively correlates with higher information
flow in between the variables. This correlation indicates that in times of crisis, the market loses
efficiency, and arbitrage opportunities occur.

Additionally, we found that the online sentiment in the Reddit forum regarding the COVID-19
pandemic yields information to all futures. There is only negligible flow in the reverse direction.
This finding indicates that there is some relation between online sentiment and index future
returns.
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Furthermore, we analyzed the information flow between indices during the COVID period and the
US housing and dotcom crises. However, the information dynamics between indices and index
futures exhibit a different structure that we can infer no further insight.

This thesis shows two main results; one methodological and one regarding information
flows between index futures. Regarding methodology, transfer entropy is a truly non-parametric
measure that enables the analysis of relations of time series without specifying their functional
form. This property is beneficial in exploratory analysis. We can evaluate the kind these relations
by employing surrogatization methods. Nonetheless, the measure is less robust and more prone
to misestimation due to finite data effects, sample characteristics, and - if applicable - the
discretization of data. We developed an information transfer maximizing approach that allows for
comparability of the information flows with similar sample sizes and normalizations. However,
this method lays on the assumption of the uniformity of the finite sample-induced bias.
At this point, it remains to be evaluated by individual researchers whether further analysis and
robustification of the model are worthwhile, or if the measure is only applied for exploratory
purposes and does not require overblown rigor.
An essential point within the methodological evaluation is, that one must be careful when com-
paring transfer entropy values, as many hyperparameters, for example sample size, discretization
method, resolution, normalization, etc., need to be carefully chosen.

Regarding the analyzed futures time series, we found a hierarchical structure of information
flow with first the crude oil future that influences all other indices, second the Asian indices that
influence the western ones, and third, downstream of the information flows the western VG1 and
ES1 index futures. A schema of these relations is presented in figure (6.9). The amount of infor-
mation flow increases during the time where the first COVID-19 counter-measures are discussed
and applied. This finding suggests incomplete information and thus market inefficiencies and
arbitrage opportunities. Even so, these findings need to be compared to other crises to establish
whether we evaluated a peculiarity or a systemic relation.

To summarize: this thesis makes two scientific contributions. First, we thoroughly evaluated
the transfer entropy measure, identified its strengths and caveats concerning sample size and parti-
tions. To control those, we introduced entropy maximizing binning at fixed sample sizes to ensure
comparability. Additionally, we evaluated different normalizations of the measure and recom-
mended using the normalization by the logarithm of the m discrete categories of a variable.
Secondly, we found an increase in information flow between futures time series in March 2020
when the pandemic response measures began. Generally, we found increased information flow
during times of economic uncertainty. This finding indicates that markets become increasingly
inefficient with rising uncertainty. This inefficiency generates arbitrage opportunities.
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8 Appendix

8.1 Mathematical Discussion of Scale Qualities

Nominal Scale If S = ({a,b, . . .},⇠) is a set of elements with the equivalence relation ⇠, the
sample scale is nominal. The equivalence relation fulfils

1. reflexivity, 8s 2 S : s ⇠ s,

2. symmetry s ⇠ t ) t ⇠ s, and

3. transitivity 8s, t,u 2 S : s ⇠ t ^ t ⇠ u ) s ⇠ u.

Ordinal Scale If S = ({a,b, . . .} ,�) is a totally ordered set with the order relation �, S fulfils
[18]

1. reflexivity, 8s 2 S : s � s,

2. antisymmetry, 8s, t 2 S : s � t ^ t � s ) s = t,

3. transitivity 8s, t,u 2 S : s � t _ t � u ) s � u, and

4. comparability 8s, t 2 S : s � t _ t � s.

Interval Scale This is different for the interval scale with S = ({a,b, . . .}⇥{a,b, . . .} ,�). Here,
the cartesian product of the two constituent sets of S is the distance between the values. The
st 2 {a,b, . . .}⇥{a,b, . . .} fulfil the axioms of the total ordered set. Additionally,

1. 8s, t,u,v 2 S : st � uv ) vu � ts,

2. 8s, t,u,v,a,b 2 S : st � uv^ ta � vb ) st � ub,

3. 8s, t,u.v 2 S � uv � tt : 9vs,vt 2 S : uv ⇠ vss ⇠ vtt, and

4. 8s, t 2 S, t � s : 9n 2 N,ns � t, the archimedian axiom.

Ratio Scale For the ratio scale S = ({a,b, . . .} ,�,�) with the axioms of the ordered set for � as
well as

1. 8s, t,u 2 S,s� (t �u)⇠ (s� t)�u, associativity,

2. 8s, t,u 2 S : s � t ) s�u � t �u^u� s � u� t , monotony, and

3. the archimedian axiom (see above).
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8.2 Supplementary Proofs

8.2.1 If f
0 is Bounded, the PDF f is Bounded

Theorem If f : R 7! R+ is a PDF, its derivative exists and f
0(x)  L almost everywhere, then

f (x) is bounded.

Proof We will prove this by contraposition. Therefore we assume without loss of generality
the rightsided limit limx#k f (x) = •. Since f is a PDF its lower bound is zero. We know that f

0

does not exist in k since limx!k
( f (x)� f (k))/(x�k) diverges. However, by assumption f

0 exists almost
everywhere. Thus it exists on S = [k� e,k) for some e with 0 < e < •.
Now let L be the upper bound of f

0(x) on S . Therefore with the fundamental theorem of calculus

lim
x#k

f (x)� f (k� e) = lim
x#k

Z
x

k�e
f
0(u)du  lim

x#k

L

Z
x

k�e
du = lim

x#k

L · (x� (k� e)) = Le. (110)

We can rearrange this inequality to

L · e + f (k� e)� lim
x#k

f (x) = •. (111)

Now f (k�e) is a probability density and thus bounded by one. e is finite per definition. Therefore
L must be not finite. This proves the theorem.

The proof is similar to the proof provided by [34].
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Figure 8.1: This figure displays the PDFs with which we evaluated entropy consistency. We
selected them to form an ensemble of differently shaped distributions.

8.3 Adapted Probability Estimator Tested Against Analytic Distributions

The first evaluation of the new probability estimator (section 4) for the transfer entropy measure
was conducted in a different framework. Instead of evaluating the transfer entropy consistency,
we evaluated the discretizing probability estimator with the entropy. We scored its standard de-
viation for samples of different sizes against the entropies with the standard probability estimator
- both normalized by their respective mean entropy to account for differences in magnitude. The
following functions were used:

• Normal Distribution: f (x) = exp(x
2/2)/

p
2p,

• Laplace Distribution f (x) = exp(�|x|)/2,

• Exponential Distribution f (x) = exp(�x),

• Uniform Distribution f (x) = x2[0,1],

• Logistic Distribution f (x) = exp(�x)/(1+exp(�x))2,

• Gumbel Distribution f (x) = exp(�exp(�x)),

• R Distribution f (x) = (1�x
2)c/2�1/B(1/2,c/2) with c = 1.6 and B the beta distribution,

• Beta Distribution f (x) = G(1)x�1/2(1�x)�1/2/G(1/2)2 with G the gamma function,

• and the Argus distribution f (x) = 1/
p

2pY(1) ·x
p

1� x2 exp
�
(1�x

2)/2
�
, where Y(c) = F(c)�

cf(c)� 1/2 with F,f being the cumulative density function and PDF of the normal distri-
bution.
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Figure 8.2: This heatmap shows the differences of the relative (to the mean) fluctuations of the
entropies calculated with the common and adapted estimator. The numbers refer to the order
presented in this chapter (8.3).

The PDFs of these functions are displayed in figure (8.1). We calculated the deviation as the mean
of the PDF-PMF deviation at 1000 equispaced probing points over (part of) the value range of the
PDF. The results are displayed in figure (8.1). The numbering is according to the performance of
the method in the evaluation set up:

1. K-Means

2. Agglomerative Hierarchical Clustering

3. Minimizing Cross Validation

4. Expectation Maximisation with Gaussian Mixture Model

5. Freedman-Diaconis Rule

6. Scotts Rule

7. Square Root N Bins

8. Rice Rule

9. Knuths Method

10. Doanes Bins

11. Agostinos Uniform Probability

12. Sturges Bins

13. Shimazakis Bins

14. Akaike Information Criterion 15. Small Sample Akaike Information Criterion

15. Bayesian Information Criterion

16. Maximising Cross-Validation Likelihood

17. Mean Shift
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18. DBSCAN

According to this evaluation setup, we see that the adapted estimator, for the most part, performs
better in terms of smaller variance normalized by the mean with all methods. This performance
increase for univariate entropies did not translate to the multivariate entropies employed for trans-
fer entropy calculation in the setup above in the thesis body.
This setup, however, yields more insight into the measure calculation within dynamic systems.
Unfortunately, the sampling from known distributions here does not allow for the modeling of
causal relations.
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